化工学报 ›› 2025, Vol. 76 ›› Issue (12): 6477-6485.DOI: 10.11949/0438-1157.20250743
收稿日期:2025-07-07
修回日期:2025-07-29
出版日期:2025-12-31
发布日期:2026-01-23
通讯作者:
周文晋,张玮
作者简介:周文晋(1994—),男,博士,讲师,zhouwenjin@ tyut.edu.cn
基金资助:
Wenjin ZHOU(
), Yatong ZHANG, Zhitong ZHAO, Wei ZHANG(
)
Received:2025-07-07
Revised:2025-07-29
Online:2025-12-31
Published:2026-01-23
Contact:
Wenjin ZHOU, Wei ZHANG
摘要:
传统的功热网络优化设计方法往往先确定变压过程,随后进行换热网络设计。基于超结构的功热网络同步优化方法因其能考虑功热间的耦合与相互影响,可实现更优的系统整体性能。然而,此类同步优化模型通常高度非凸非线性,导致求解困难,尤其是面向大规模工业问题时。为应对这一难题,本研究提出了一种基于动态运输模型的确定性优化设计方法。该方法利用运输模型的特性,在保证热集成模型线性约束下,实现最优功热集成下系统压力操作路径与换热匹配方案的高效确定,并为功热网络的详细设计提供指导。针对一个包含14条换热流股的功热集成案例进行研究,提出的方法在1000 s内得到了一个新的压力操作路径以及相应的换热匹配,该方案的总费用目标值为8761480.49 USD·a-1,与文献中已知费用最优解高度逼近,验证了所提方法的准确性和有效性。
中图分类号:
周文晋, 张雅桐, 赵志仝, 张玮. 功热集成中压力操作路径和换热匹配的同步优化[J]. 化工学报, 2025, 76(12): 6477-6485.
Wenjin ZHOU, Yatong ZHANG, Zhitong ZHAO, Wei ZHANG. Simultaneous optimization of pressure operating path and heat exchange matches in work and heat integration[J]. CIESC Journal, 2025, 76(12): 6477-6485.
| 流股 | bar | bar | CP/ (kW·K-1) | h/ (kW·m-2·K-1) | ||
|---|---|---|---|---|---|---|
| 1(LP-Fe1) | 298.15 | 298.15 | 1 | 8 | 37.49 | 0.1 |
| 2(LP-Fe2) | 298.15 | 298.15 | 1 | 8 | 10.09 | 0.1 |
| 3(Flue gas) | 650.15 | 348.15 | — | — | 43.77 | 0.1 |
| 4(HP-Re1) | 298.15 | 298.15 | 8 | 1 | 27.40 | 0.1 |
| 5(HP-Re2) | 298.15 | 298.15 | 8 | 1 | 4.40 | 0.1 |
| 6(Cold air) | 288.15 | 600.15 | — | — | 34.70 | 0.1 |
| HU | 650.00 | 649.00 | — | — | — | 1.0 |
| CU | 288.15 | 289.15 | — | — | — | 1.0 |
表1 流股数据
Table 1 Stream data
| 流股 | bar | bar | CP/ (kW·K-1) | h/ (kW·m-2·K-1) | ||
|---|---|---|---|---|---|---|
| 1(LP-Fe1) | 298.15 | 298.15 | 1 | 8 | 37.49 | 0.1 |
| 2(LP-Fe2) | 298.15 | 298.15 | 1 | 8 | 10.09 | 0.1 |
| 3(Flue gas) | 650.15 | 348.15 | — | — | 43.77 | 0.1 |
| 4(HP-Re1) | 298.15 | 298.15 | 8 | 1 | 27.40 | 0.1 |
| 5(HP-Re2) | 298.15 | 298.15 | 8 | 1 | 4.40 | 0.1 |
| 6(Cold air) | 288.15 | 600.15 | — | — | 34.70 | 0.1 |
| HU | 650.00 | 649.00 | — | — | — | 1.0 |
| CU | 288.15 | 289.15 | — | — | — | 1.0 |
| 参数 | 数值 | 参数 | 数值 |
|---|---|---|---|
| Coem/(USD·kW-1·a-1) | 455.04 | Af | 0.18 |
| Coge/(USD·kW-1·a-1) | 364.03 | 1.4 | |
| HU/(USD·kW-1·a-1) | 400 | 0.85 | |
| CU/(USD·kW-1·a-1) | 100 | 0.9 | |
| 压缩机投资费/(USD·a-1) | 51104.85w0.62 | Rc 范围 | 1.1~8 |
| 膨胀机投资费/(USD·a-1) | 2585.47w0.81 | Rt 范围 | 0.125~0.8 |
| 电动机或发电机投资费/(USD·a-1) | 985.47w0.62 | 变压流股温度范围/K | 150~600 |
| 离散化后温度误差允许的上界值/K | 2 | 换热器投资费用/(USD·a-1) | 93500.12+602.96area+0.149(area)2 |
表2 其他参数
Table 2 Other parameters
| 参数 | 数值 | 参数 | 数值 |
|---|---|---|---|
| Coem/(USD·kW-1·a-1) | 455.04 | Af | 0.18 |
| Coge/(USD·kW-1·a-1) | 364.03 | 1.4 | |
| HU/(USD·kW-1·a-1) | 400 | 0.85 | |
| CU/(USD·kW-1·a-1) | 100 | 0.9 | |
| 压缩机投资费/(USD·a-1) | 51104.85w0.62 | Rc 范围 | 1.1~8 |
| 膨胀机投资费/(USD·a-1) | 2585.47w0.81 | Rt 范围 | 0.125~0.8 |
| 电动机或发电机投资费/(USD·a-1) | 985.47w0.62 | 变压流股温度范围/K | 150~600 |
| 离散化后温度误差允许的上界值/K | 2 | 换热器投资费用/(USD·a-1) | 93500.12+602.96area+0.149(area)2 |
| 项目 | (ts1, m1) | (ts1, m2) | (ts2, m1) | (ts2, m2) | cps1 | cus1 |
|---|---|---|---|---|---|---|
| (cs1, m1) | 1 | 1 | 1 | 1 | ||
| (cs1, m2) | 1 | 1 | ||||
| (cs2, m1) | 1 | |||||
| (cs2, m2) | 1 | |||||
| hps1 | 1 | 1 | 1 | 1 |
表3 优化确定的换热匹配
Table 3 Heat exchange matches determined through optimization
| 项目 | (ts1, m1) | (ts1, m2) | (ts2, m1) | (ts2, m2) | cps1 | cus1 |
|---|---|---|---|---|---|---|
| (cs1, m1) | 1 | 1 | 1 | 1 | ||
| (cs1, m2) | 1 | 1 | ||||
| (cs2, m1) | 1 | |||||
| (cs2, m2) | 1 | |||||
| hps1 | 1 | 1 | 1 | 1 |
| 项目 | Pavão等[ | Santos等[ | Lin 等[ | 本研究① |
|---|---|---|---|---|
| TAC/(USD·a-1) | 9011115.00 | 8919187.84 | 8829551.00 | 8761480.49 |
| 回收热量/kW | 14648.90 | 14721.10 | 14777.70 | 15000.19 |
| 回收功/kW | 3822.40 | 3870.40 | 3951.10 | 3930.15 |
| 热公用工程消耗/kW | 0 | 0 | 0 | 0 |
| 冷公用工程消耗/kW | 8935.50 | 8818.30 | 8473.00 | 7945.28 |
| 电力消耗/kW | 6544.30 | 6426.10 | 6082.90 | 5908.83 |
| 电力产生/kW | 0 | 0 | 0 | 0 |
| 换热器数量 | 10 | 9 | 14 | 12 |
| 变压单元数量 | 4 | 5 | 5 | 6 |
表4 本研究和文献中的功热集成优化结果对比
Table 4 Comparison of integrated optimization results of work and heat in this article and literatures
| 项目 | Pavão等[ | Santos等[ | Lin 等[ | 本研究① |
|---|---|---|---|---|
| TAC/(USD·a-1) | 9011115.00 | 8919187.84 | 8829551.00 | 8761480.49 |
| 回收热量/kW | 14648.90 | 14721.10 | 14777.70 | 15000.19 |
| 回收功/kW | 3822.40 | 3870.40 | 3951.10 | 3930.15 |
| 热公用工程消耗/kW | 0 | 0 | 0 | 0 |
| 冷公用工程消耗/kW | 8935.50 | 8818.30 | 8473.00 | 7945.28 |
| 电力消耗/kW | 6544.30 | 6426.10 | 6082.90 | 5908.83 |
| 电力产生/kW | 0 | 0 | 0 | 0 |
| 换热器数量 | 10 | 9 | 14 | 12 |
| 变压单元数量 | 4 | 5 | 5 | 6 |
| [1] | Raimi D, Zhu Y, Newell R G, et al. Global Energy Outlook 2024: Peaks or Plateaus? [R]. Washington, DC: Resources for the Future, 2024. |
| [2] | Fu C, Vikse M, Gundersen T. Work and heat integration: an emerging research area[J]. Energy, 2018, 158: 796-806. |
| [3] | Linnhoff B, Hindmarsh E. The pinch design method for heat exchanger networks[J]. Chemical Engineering Science, 1983, 38(5): 745-763. |
| [4] | Xu Y, Liu W W, Zhang L, et al. A comprehensive review of recent advancements and developments in heat exchanger network synthesis techniques[J]. Science China Technological Sciences, 2024, 67(2): 335-356. |
| [5] | Zhuang Y, Liu L L, Liu Q L, et al. Step-wise synthesis of work exchange networks involving heat integration based on the transshipment model[J]. Chinese Journal of Chemical Engineering, 2017, 25(8): 1052-1060. |
| [6] | Razib M S, Hasan M M F, Karimi I A. Preliminary synthesis of work exchange networks[J]. Computers & Chemical Engineering, 2012, 37: 262-277. |
| [7] | Gundersen T, Berstad D O, Aspelund A. Extending pinch analysis and process integration into pressure and fluid phase considerations[J]. Chemical Engineering Transactions, 2009, 18: 33-38. |
| [8] | Wechsung A, Aspelund A, Gundersen T, et al. Synthesis of heat exchanger networks at subambient conditions with compression and expansion of process streams[J]. AIChE Journal, 2011, 57(8): 2090-2108. |
| [9] | Onishi V C, Ravagnani M A S S, Caballero J A. Simultaneous synthesis of heat exchanger networks with pressure recovery: optimal integration between heat and work[J]. AIChE Journal, 2014, 60(3): 893-908. |
| [10] | Yee T F, Grossmann I E. Simultaneous optimization models for heat integration ( Ⅱ ) : Heat exchanger network synthesis[J]. Computers & Chemical Engineering, 1990, 14(10): 1165-1184. |
| [11] | Huang K F, Karimi I A. Simultaneous synthesis approaches for cost-effective heat exchanger networks[J]. Chemical Engineering Science, 2013, 98: 231-245. |
| [12] | Huang K F, Karimi I A. Work-heat exchanger network synthesis (WHENS)[J]. Energy, 2016, 113: 1006-1017. |
| [13] | Nair S K, Rao H N, Karimi I A. Framework for work-heat exchange network synthesis (WHENS)[J]. AIChE Journal, 2018, 64(7): 2472-2485. |
| [14] | Yu H S, Fu C, Gundersen T. Work exchange networks (WENs) and work and heat exchange networks (WHENs): a review of the current state of the art[J]. Industrial & Engineering Chemistry Research, 2020, 59(2): 507-525. |
| [15] | 杨蕊, 庄钰, 刘琳琳, 等. 功热交换网络综合的研究进展[J]. 化工进展, 2019, 38(6): 2550-2558. |
| Yang R, Zhuang Y, Liu L L, et al. Research progress on work and heat exchange network synthesis[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2550-2558. | |
| [16] | Furman K C, Sahinidis N V. Computational complexity of heat exchanger network synthesis[J]. Computers & Chemical Engineering, 2001, 25(9/10): 1371-1390. |
| [17] | Pavão L V, Caballero J A, Ravagnani M A S S, et al. A pinch-based method for defining pressure manipulation routes in work and heat exchange networks[J]. Renewable and Sustainable Energy Reviews, 2020, 131: 109989. |
| [18] | Santos L F, Costa C B B, Caballero J A, et al. Synthesis and optimization of work and heat exchange networks using an MINLP model with a reduced number of decision variables[J]. Applied Energy, 2020, 262: 114441. |
| [19] | Lin Q C, Chang C L, Liao Z W, et al. Efficient strategy for the synthesis of work and heat exchange networks[J]. Industrial & Engineering Chemistry Research, 2021, 60(4): 1756-1773. |
| [20] | 林渠成, 廖祖维. 基于分解算法的功热交换网络多目标优化[J]. 化工学报, 2022, 73(11): 5047-5055. |
| Lin Q C, Liao Z W. Multi-objective optimization of work and heat exchange networks based on a decomposition algorithm[J]. CIESC Journal, 2022, 73(11): 5047-5055. | |
| [21] | Lin Q C, Liao Z W, Bagajewicz M J. Globally optimal design of minimal WHEN systems using enumeration[J]. AIChE Journal, 2023, 69(1): e17878. |
| [22] | Lin Q C, Liao Z W. Super-targeting of non-minimal WHEN systems[J]. Chemical Engineering Science, 2024, 296: 120224. |
| [23] | Zhuang Y, Xing Y F, Zhang L, et al. An enhanced superstructure-based model for work-integrated heat exchange network considering inter-stage multiple utilities optimization[J]. Computers & Chemical Engineering, 2021, 152: 107388. |
| [24] | Ibrić N, Fu C, Gundersen T. Simultaneous optimization of work and heat exchange networks[J]. Energies, 2024, 17(7): 1753. |
| [25] | Rossato I G, Costa C B B, da Silva Sá Ravagnani M A, et al. Optimization of pressure manipulation routes considering the rigorous calculation of thermodynamic properties[J]. Applied Thermal Engineering, 2025, 265: 125548. |
| [26] | Braccia L, Luppi P, Vallarella A J, et al. Generalized simultaneous optimization model for synthesis of heat and work exchange networks[J]. Computers & Chemical Engineering, 2022, 168: 108036. |
| [27] | Yu H S, Fu C, Vikse M, et al. Identifying optimal thermodynamic paths in work and heat exchange network synthesis[J]. AIChE Journal, 2019, 65(2): 549-561. |
| [28] | Grossmann I E, Trespalacios F. Systematic modeling of discrete-continuous optimization models through generalized disjunctive programming[J]. AIChE Journal, 2013, 59(9): 3276-3295. |
| [29] | Zhou W J, Yang D, Liu L L, et al. Two-stage mathematical approach for automated heat exchanger network synthesis considering cost and numbers of subnetworks[J]. Chemical Engineering Science, 2025, 306: 121225. |
| [30] | Fu C, Gundersen T. Heat and work integration: fundamental insights and applications to carbon dioxide capture processes[J]. Energy Conversion and Management, 2016, 121: 36-48. |
| [31] | Pavão L V, Miranda C B, Caballero J A, et al. Multiperiod work and heat integration[J]. Energy Conversion and Management, 2021, 227: 113587. |
| [1] | 汪思远, 刘国强, 熊通, 晏刚. 窗式空调器轴流风机的风速非均匀分布特性及其对冷凝器流路优化设计的影响规律[J]. 化工学报, 2025, 76(S1): 205-216. |
| [2] | 孔繁臣, 张硕, 唐明生, 邹慧明, 胡舟航, 田长青. 二氧化碳直线压缩机气体轴承模拟[J]. 化工学报, 2025, 76(S1): 281-288. |
| [3] | 燕子腾, 詹飞龙, 丁国良. 空调用套管式分流器结构设计及分流效果验证[J]. 化工学报, 2025, 76(S1): 152-159. |
| [4] | 王三一, 黄文来. 电化学合成氨流程建模与优化[J]. 化工学报, 2025, 76(9): 4474-4486. |
| [5] | 赵婧, 董书辰, 李高洋, 黄友科, 石浩森, 缪舒文, 谭辰妍, 朱唐琦, 李永帅, 潘慧, 凌昊. 基于电化学模型的电池性能模拟与优化[J]. 化工学报, 2025, 76(9): 4922-4932. |
| [6] | 田鹏, 张忠林, 任超, 孟国超, 郝晓刚, 刘叶刚, 侯起旺, ABUDULA Abuliti, 官国清. 基于自热再生的一种低温甲醇洗工艺建模与优化[J]. 化工学报, 2025, 76(9): 4601-4612. |
| [7] | 王杰, 林渠成, 张先明. 基于分解算法的混合气体多级膜分离系统全局优化[J]. 化工学报, 2025, 76(9): 4670-4682. |
| [8] | 曹潇风, 张华海, 王江云, 王利民. 锥形气体层流元件结构设计及流动特性研究[J]. 化工学报, 2025, 76(9): 4440-4448. |
| [9] | 范夏雨, 孙建辰, 李可莹, 姚馨雅, 商辉. 机器学习驱动液态有机储氢技术的系统优化[J]. 化工学报, 2025, 76(8): 3805-3821. |
| [10] | 李科, 谢昊琳, 文键. 耦合多重蒸气冷却屏的液氢储罐绝热性能的多目标遗传算法优化[J]. 化工学报, 2025, 76(8): 4217-4227. |
| [11] | 王涛, 李光明, 胡秋霞, 徐静. 基于时序演变粒子群算法的双色注射产品翘曲工艺优化[J]. 化工学报, 2025, 76(7): 3403-3415. |
| [12] | 陈宇航, 陈金国, 陈炜毅, 王康, 郑昊, 韩昌亮. 沉浸式气化器烟气分布器布气性能与多目标参数优化[J]. 化工学报, 2025, 76(7): 3274-3285. |
| [13] | 吴小龙, 黄晓璜, 肖媛, 单灵海, 叶家慧, 崔国民. 一种预留节点策略应用于换热网络优化[J]. 化工学报, 2025, 76(7): 3388-3402. |
| [14] | 王金江, 鲁振杰, 安维峥, 杨风允, 秦小刚. ORC发电系统工艺过程预警诊断技术研究与展望[J]. 化工学报, 2025, 76(7): 3137-3152. |
| [15] | 向晓彤, 段旭东, 王斯民. 多目标优化驱动的PEM电解槽性能研究[J]. 化工学报, 2025, 76(6): 2626-2637. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号