• •
收稿日期:2025-08-15
修回日期:2025-10-01
出版日期:2025-11-13
通讯作者:
卢春喜
作者简介:李凌宇(2000—),男,硕士研究生,lilingyu0229@163.com
基金资助:
Lingyu LI1(
), Weixing JIN1,2, Zhaolong WU1, Chunxi LU1(
)
Received:2025-08-15
Revised:2025-10-01
Online:2025-11-13
Contact:
Chunxi LU
摘要:
二元颗粒流化床广泛应用于生物质热解、煤化工、石油化工等领域。中心气升式环流流化床因其结构简单,操作方便等特点,非常适用于流化床的过程强化。重点考察了由FCC催化剂颗粒(细颗粒,dp=90 μm)与分子筛颗粒(粗颗粒,dp=1850 μm)构成的具有大尺度差异的混合二元颗粒体系在环流床和无内构件自由床中的流动特性。结果表明:对于单一细颗粒体系,环流床导流筒区域内的平均颗粒速度比自由床提高40% ~ 62.9%;环流床整体平均气泡尺寸比自由床小12.8% ~ 20.8%。对于混合颗粒体系,导流筒内构件的强化效果明显,其固含率径向分布较自由床更加均匀;颗粒速度分布与气泡尺寸分布不仅优于相同操作条件下的自由床,甚至优于单一细颗粒自由床。采用局部流化质量因子对环流床与自由床内的流化质量进行定量分析,相较于自由床,环流床内的流化质量提高了25% ~ 29.4%。
中图分类号:
李凌宇, 金伟星, 吴兆龙, 卢春喜. 环流流化床内大差异二元颗粒的流动机制研究[J]. 化工学报, DOI: 10.11949/0438-1157.20250916.
Lingyu LI, Weixing JIN, Zhaolong WU, Chunxi LU. Study on flow mechanism of binary particles with large differences in draft tube fluidized beds[J]. CIESC Journal, DOI: 10.11949/0438-1157.20250916.
| 颗粒种类 | 平均粒径/μm | 颗粒堆积密度/(kg/m³) | 颗粒密度/(kg/m³) | 最小流化速度/(m/s) | 带出速度/(m/s) |
|---|---|---|---|---|---|
| FCC | 90 | 861 | 1440 | 0.036 | 0.4 |
| 分子筛 | 1875 | 745 | 1161 | 0.680 | 8.0 |
表1 颗粒基本物性参数
Table 1 Basic physical parameters of particles
| 颗粒种类 | 平均粒径/μm | 颗粒堆积密度/(kg/m³) | 颗粒密度/(kg/m³) | 最小流化速度/(m/s) | 带出速度/(m/s) |
|---|---|---|---|---|---|
| FCC | 90 | 861 | 1440 | 0.036 | 0.4 |
| 分子筛 | 1875 | 745 | 1161 | 0.680 | 8.0 |
| 序号 | h/mm |
|---|---|
| 1 | 380 |
| 2 | 680 |
| 3 | 940 |
| 4 | 1220 |
表2 自由床测点分布
Table 2 Distribution of measure point in free fluidized beds
| 序号 | h/mm |
|---|---|
| 1 | 380 |
| 2 | 680 |
| 3 | 940 |
| 4 | 1220 |
| 序号 | h/mm | 序号 | h/mm | 序号 | h/mm | |
|---|---|---|---|---|---|---|
| 1 | 175 | 6 | 1030 | 11 | 2870 | |
| 2 | 360 | 7 | 1400 | 12 | 350 | |
| 3 | 525 | 8 | 1640 | 13 | 510 | |
| 4 | 675 | 9 | 1900 | 14 | 670 | |
| 5 | 830 | 10 | 2430 | 15 | 830 |
表3 环流床测点分布
Table 3 Distribution of measure point in draft tube fluidized beds
| 序号 | h/mm | 序号 | h/mm | 序号 | h/mm | |
|---|---|---|---|---|---|---|
| 1 | 175 | 6 | 1030 | 11 | 2870 | |
| 2 | 360 | 7 | 1400 | 12 | 350 | |
| 3 | 525 | 8 | 1640 | 13 | 510 | |
| 4 | 675 | 9 | 1900 | 14 | 670 | |
| 5 | 830 | 10 | 2430 | 15 | 830 |
| 加入大颗粒质量分数 | 标定方程 |
|---|---|
| x0=0 | |
| x0=0.3 |
表4 光纤电压标定方程
Table 4 Calibration curve equations of OFP under different initial blending ratios
| 加入大颗粒质量分数 | 标定方程 |
|---|---|
| x0=0 | |
| x0=0.3 |
| [1] | 焦阳, 王涛, 龚建议, 等. 催化裂化催化剂生产技术进展[J]. 石油炼制与化工, 2025, 56(5): 27-32. |
| Jiao Y, Wang T, Gong J Y, et al. Progress in catalytic cracking catalyst production technology[J]. Petroleum Processing and Petrochemicals, 2025, 56(5): 27-32. | |
| [2] | 侯凯军, 高金森, 马安, 等. 重油催化裂解制低碳烯烃工艺技术研究进展[J]. 应用化工, 2022, 51(11): 3278-3284. |
| Hou K J, Gao J S, Ma A, et al. Research progress in heavy oil catalytic pyrolysis technology for light olefins[J]. Applied Chemical Industry, 2022, 51(11): 3278-3284. | |
| [3] | Sha Y C, Han L, Wang R Y, et al. Tailoring ZSM-5 zeolite through metal incorporation: Toward enhanced light olefins production via catalytic cracking: a minireview[J]. Journal of Industrial and Engineering Chemistry, 2023, 126: 36-49. |
| [4] | Wang W J, Yan H, Zhao H, et al. Process simulation and multi-objective optimization for novel TMP-OCC integrated fluidized catalytic cracking and Olefin catalytic cracking technologies[J]. Chemical Engineering Research and Design, 2025, 219: 522-533. |
| [5] | 卢春喜, 金伟星, 鄂承林, 等. 一种双组分颗粒催化剂耦合流化床催化裂化的方法及装置: 114262624A[P]. 2022-09-23. |
| Lu C X, Jin W X, E C L, et al. A method and device for catalytic cracking in a coupled fluidized bed with two-component granular catalysts: 114262624A[P]. 2022-09-23. | |
| [6] | 金伟星, 宋雨珍, 范怡平, 等. 二元颗粒体系流化床反应器的研究进展[J]. 化学反应工程与工艺, 2025, 41(1): 24-32. |
| Jin W X, Song Y Z, Fan Y P, et al. Research progress on fluidized bed reactors for binary particle systems[J]. Chemical Reaction Engineering and Technology, 2025, 41(1): 24-32. | |
| [7] | 张振千. 催化裂化装置主风分布器改造[J]. 炼油设计, 2002, 32(8): 29-31. |
| Zhang Z Q. Revamping of main air distributor in FCC unit[J]. Petroleum Refinery Engineering, 2002, 32(8): 29-31. | |
| [8] | 张丽萍. 催化裂化装置再生系统改造的探讨[J]. 当代化工, 2009, 38(1): 29-32, 41. |
| Zhang L P. Discussion on improving regeneration system of fluid catalytic cracking unit[J]. Contemporary Chemical Industry, 2009, 38(1): 29-32, 41. | |
| [9] | 张立平. 催化裂化提升管式高效再生器达到实用化[J]. 现代化工, 1999, 19(3): 30. |
| Zhang L P. The FCC riser high-efficiency regenerator has been put into practical use[J]. Modern Chemical Industry, 1999, 19(3): 30. | |
| [10] | 杨启业, 金涌, 胡伯光, 等. 一种催化裂化提升管烧焦再生器: 102816589B[P]. 1994-06-22. |
| Yang Q T, Jin Y, Hu B G, et al. A catalytic cracking riser coke-burning regenerator: 102816589B[P]. 1994-06-22. | |
| [11] | 刘雅宁, 鲁波娜, 卢利强, 等. 基于EMMS模型的大型催化裂化装置再生器气固分布数值模拟[J]. 化工学报, 2015, 66(8): 2911-2919. |
| Liu Y N, Lu B N, Lu L Q, et al. EMMS-based numerical simulation on gas and solids distribution in large-scale FCC regenerators[J]. CIESC Journal, 2015, 66(8): 2911-2919. | |
| [12] | 杨智君. 催化裂化再生强化机理的CPFD模拟[D]. 北京: 中国石油大学(北京), 2020. |
| Yang Z J. CPFD simulation on mechanisms of two regeneration strengthening technologies in fluid catalytic cracking units[D]. Beijing: China University of Petroleum (Beijing), 2020. | |
| [13] | 江波. 对湍流床再生器内设置格栅的探讨[J]. 炼油技术与工程, 2010, 40(4): 33-36. |
| Jiang B. Study on installation of grids in turbulent-bed regenerator[J]. Petroleum Refinery Engineering, 2010, 40(4): 33-36. | |
| [14] | 卢春喜, 张永民. 气固流化床内构件: 120679434A[P]. 2009-09-02. |
| Lu C X, Zhang Y M. Gas-solid fluidized bed internals: 120679434A[P]. 2009-09-02. | |
| [15] | 卢春喜, 徐桂明, 卢水根, 等. 用于催化裂化的预汽提式提升管末端快分系统的研究及工业应用[J]. 石油炼制与化工, 2002, 33(1): 33-37. |
| Lu C X, Xu G M, Lu S G, et al. Study and industry application of a pre-stripping separation system for riser termination of fccu[J]. Petroleum Processing and Petrochemicals, 2002, 33(1): 33-37. | |
| [16] | 张永民, 卢春喜, 时铭显. 催化裂化新型环流汽提器的大型冷模实验[J]. 高校化学工程学报, 2004, 18(3): 377-380. |
| Zhang Y M, Lu C X, Shi M X. Largescale cold pilot experiment on a new annular catalyst stripper for FCC units[J]. Journal of Chemical Engineering of Chinese Universities, 2004, 18(3): 377-380. | |
| [17] | 姚秀颖. 气固环流取热器内流动、传热特性的实验研究和数值模拟[D]. 北京: 中国石油大学(北京), 2015: 65-85. |
| Yao X Y. Experimental study and numerical simulation on hydrodynamic and heat transfer characteristics in a gas-solids annular catalyst cooler[D]. Beijing: China University of Petroleum (Beijing), 2015: 65-85. | |
| [18] | 李凌霄. 工业催化裂化装置再生器环流强化技术的CFD模拟研究[D]. 北京: 中国石油大学(北京), 2019. |
| Li L X. Simulation of circulating enhancement technology in industry-scale regenerator of fluid catalytic cracking[D]. Beijing: China University of Petroleum (Beijing), 2019. | |
| [19] | 汤浩男 快速床湍流床串联再生器模拟优化[D]. 北京:中国石油大学(北京), 2023. |
| Tang H N. Simulation and optimization of a fast bed-turbulent bed series regenerator[D]. Beijing: China University of Petroleum (Beijing), 2023. | |
| [20] | Zhang Y M, Lu C X, Shi M X. A new homogeneity index to characterize the fluidization quality for non-slugging fluidized beds of Geldart A particles[J]. Powder Technology, 2009, 191(1/2): 182-187. |
| [21] | Saxena S C, Rao N S. Pressure fluctuations in a gas fluidized bed and fluidization quality[J]. Energy, 1990, 15(6): 489-497. |
| [22] | Saxena S C, Rao N S. Determination of fluidization quality of beds of spherical particles[J]. Energy, 1991, 16(9): 1199-1206. |
| [23] | Zhou Y, Zhao Z W, Zhu J, et al. Group C+ particles: Efficiency augmentation of fluidized bed reactor through nano-modulation[J]. AIChE Journal, 2020, 66(4): e16870. |
| [24] | Renganathan T, Krishnaiah K. Voidage characteristics and prediction of bed expansion in liquid–solid inverse fluidized bed[J]. Chemical Engineering Science, 2005, 60(10): 2545-2555. |
| [25] | Aguillón J, Shakourzadeh K, Guigon P. Comparative study of non-isokinetic sampling probes for solids flux measurement in circulating fluidized beds[J]. Powder Technology, 1995, 83(1): 79-84. |
| [26] | 金伟星, 闫珺, 鄂承林, 等. 双组分大差异颗粒在气固流化床内混合/分离特性[J]. 化工学报, 2022, 73(11): 4872-4883. |
| Jin W X, Yan J, E C L, et al. Mixing/separation characteristics of great different particles in gas-solid fluidized bed[J]. CIESC Journal, 2022, 73(11): 4872-4883. | |
| [27] | Jin W X, Huo D X, Gao J M, et al. Mixing and flow characteristics of binary particles with a significant difference in particle size in a coupled fluidized bed[J]. Chemical Engineering Journal, 2025, 509: 161294. |
| [28] | Jin W X, Song Y Z, Li L Y, et al. An improved method to process the data of optical Fiber signals for identifying the instantaneous flow structure in a gas-solid fluidized bed[J]. Powder Technology, 2025, 452: 120475. |
| [29] | Dry R J. Radial particle size segregation in a fast fluidised bed[J]. Powder Technology, 1987, 52(1): 7-16. |
| [30] | Du M K, Wang S. Investigation of the segregation of a binary particle mixture in a square circulating fluidized bed with air staging[J]. Particuology, 2019, 47: 70-76. |
| [31] | Niu L, Huang Y H, Chu Z M, et al. Identification of mesoscale flow in a bubbling and turbulent gas–solid fluidized bed[J]. Industrial & Engineering Chemistry Research, 2019, 58(19): 8456-8471. |
| [32] | Yuan Z M, Feng Y P, Huang Z, et al. Effects of particle size on bubble dynamic behaviors in a quasi-two-dimensional gas-solid fluidized bed[J]. Powder Technology, 2024, 436: 119451. |
| [33] | Zhu X L, Liu Y B, Jiang X J, et al. Effects of pressure and particle size on bubble behaviors in a pseudo 2D pressured fluidized bed with Geldart A/B, B and D particles[J]. Chemical Engineering Journal, 2023, 470: 143904. |
| [34] | Noda K, Uchida S, Makino T, et al. Minimum fluidization velocity of binary mixture of particles with large size ratio[J]. Powder Technology, 1986, 46(2/3): 149-154. |
| [1] | 刘卓龙, 甘云华, 屈可扬, 陈宁光, 潘铭晖. 均匀电场对生物柴油小尺度射流扩散燃烧特性影响研究[J]. 化工学报, 2025, 76(9): 4800-4808. |
| [2] | 朱紫橙, 焦云鹏, 刘梦溪, 陈建华. 三相流化床内分布器与挡板效应的模拟分析[J]. 化工学报, 2025, 76(8): 3873-3884. |
| [3] | 周航, 张斯婧, 刘剑, 张小松. 小通道内非共沸工质流动沸腾换热数值分析[J]. 化工学报, 2025, 76(8): 3864-3872. |
| [4] | 刘建海, 王磊, 鲁朝金, 白志山, 张平雨. 耦合电化学与多相流模型的电解槽性能研究[J]. 化工学报, 2025, 76(8): 3885-3893. |
| [5] | 常心泉, 张克学, 王军, 夏国栋. 自由分子区内不规则颗粒的热泳力计算[J]. 化工学报, 2025, 76(8): 3944-3953. |
| [6] | 马永丽, 安澍, 杨捷, 刘明言. 气液固流化床直接数值模拟研究进展[J]. 化工学报, 2025, 76(8): 3772-3788. |
| [7] | 王芳, 马素霞, 田营, 刘众元. 基于LSTM动态修正一维机理模型的CFB机组NO x 排放浓度预测方法[J]. 化工学报, 2025, 76(7): 3416-3425. |
| [8] | 陈曦, 王淑彦, 邵宝力, 丁诺, 谢磊. 基于颗粒动态恢复系数二阶矩模型的液固流化床数值模拟研究[J]. 化工学报, 2025, 76(7): 3246-3258. |
| [9] | 陈巨辉, 陈轲, 李丹, 杨天一, ZHURAVKOV Michael, LAPATSIN Siarhel, 姜文锐. 基于多组分DQMOM模型的FCC辅助纳米颗粒混合体系流化研究[J]. 化工学报, 2025, 76(6): 2616-2625. |
| [10] | 张亿韵, 陈恒志, 李洋, 慕长安, 王泉海. 湍流对双组分颗粒流化床气体径向扩散的影响[J]. 化工学报, 2025, 76(6): 2559-2568. |
| [11] | 郭江悦, 常守金, 胡海涛. 水平管内甲醇流动冷凝数值模拟研究[J]. 化工学报, 2025, 76(6): 2580-2588. |
| [12] | 王令颁, 孙漪霏, 卜禹豪, 许振彬, 孙贤, 邵瀚锋, 孙长宇, 陈光进. 大尺度扇柱形反应釜内甲烷水合物降压开采规律研究[J]. 化工学报, 2025, 76(6): 2958-2973. |
| [13] | 徐东菱, 马跃, 龚露, 马桂丽, 王金可, 郭丰志, 王浩伦, 李思佳, 李术元, 岳长涛. 油页岩与烟煤混合流化热解实验研究[J]. 化工学报, 2025, 76(4): 1742-1753. |
| [14] | 张鑫源, 何呈祥, 李亚婷, 朱春英, 马友光, 付涛涛. 微通道内液液非均相传质的模拟和实验研究方法进展[J]. 化工学报, 2025, 76(2): 484-503. |
| [15] | 李舒月, 王欢, 周少强, 毛志宏, 张永民, 王军武, 吴秀花. 重质颗粒流态化研究现状与展望[J]. 化工学报, 2025, 76(2): 466-483. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号