• •
陈家庆1,4(
), 王春尧1,3, 傅剑峰2, 姬宜朋1,3(
), 李贵旺5, 张蕾1,3, 阚滨滨2, 司政6, 张超1,3
收稿日期:2025-11-17
修回日期:2025-12-29
出版日期:2026-02-02
通讯作者:
姬宜朋
作者简介:陈家庆(1970-),男,博士研究生,教授,jiaging@ncut.edu.cn
基金资助:
Jiaqing CHEN1,4(
), Chunyao WANG1,3, Jianfeng FU2, Yipeng JI1,3(
), Guiwang LI5, Lei ZHANG1,3, Binbin KAN2, Zheng SI6, Chao ZHANG1,3
Received:2025-11-17
Revised:2025-12-29
Online:2026-02-02
Contact:
Yipeng JI
摘要:
动态旋流分离技术广泛应用于油田采出水处理,明确强旋流场内油滴破碎机制,对低剪切起旋元件结构优化设计及工艺参数确定具有重要意义。借助高速摄像机和Image J软件,观测含油污水中油滴在轴向涡流分离器内变形和破碎过程;耦合实验与计算流体动力学(CFD)软件模拟结果,分析不同湍动能耗散率下油滴破碎临界粒径dcri,修正强旋流场中Hinze公式常数C,修正后公式决定系数R2为0.82。在此基础上计算油滴破碎时临界Weber数Wecri与毛细管数Cacri,探究叶栅入口、迎水面和背水面三处油滴形态和破碎规律与所受应力分量的关系。结果表明,Wecri和Cacri随油滴粒径增加而增加;剪切应力分量τrθ、τθz使油滴发生不规则变形并破碎,拉伸应力分量τθθ、τrr使油滴变形为均匀线形并破碎。
中图分类号:
陈家庆, 王春尧, 傅剑峰, 姬宜朋, 李贵旺, 张蕾, 阚滨滨, 司政, 张超. 轴向涡流分离器内分散相油滴的破碎机制研究[J]. 化工学报, DOI: 10.11949/0438-1157.20251272.
Jiaqing CHEN, Chunyao WANG, Jianfeng FU, Yipeng JI, Guiwang LI, Lei ZHANG, Binbin KAN, Zheng SI, Chao ZHANG. Study on the breakup mechanism of dispersed phase oil droplets in axial vortex separator[J]. CIESC Journal, DOI: 10.11949/0438-1157.20251272.
| 起旋叶栅直径D1/mm | 叶片长度e/mm | 叶栅高度H/mm | 过渡段圆锥长度L0/mm | 分离机筒直径D2/mm | 分离机筒长度L1/mm |
|---|---|---|---|---|---|
| 25.00 | 50.00 | 6.00 | 13.00 | 22.00 | 190.00 |
表1 轴向涡流分离器主要结构尺寸
Table 1 The main structural dimensions of the Axial Vortex Separator
| 起旋叶栅直径D1/mm | 叶片长度e/mm | 叶栅高度H/mm | 过渡段圆锥长度L0/mm | 分离机筒直径D2/mm | 分离机筒长度L1/mm |
|---|---|---|---|---|---|
| 25.00 | 50.00 | 6.00 | 13.00 | 22.00 | 190.00 |
| 油滴尺寸范围/mm | [0.60-0.90) | [0.90-1.20) | [1.20-1.50] |
|---|---|---|---|
| 破碎次数 | 22 | 27 | 38 |
表2 油滴尺寸范围和破碎观测次数
Table 2 Droplet size range and number of fragmentation observations
| 油滴尺寸范围/mm | [0.60-0.90) | [0.90-1.20) | [1.20-1.50] |
|---|---|---|---|
| 破碎次数 | 22 | 27 | 38 |
| 序号 | 粒径/mm | 湍动能耗散率/m2/s3 | 临界Weber数 | 水力旋流器Weber数 | 毛细管数 |
|---|---|---|---|---|---|
| 1 | 0.75 | 270.08 | 11.18 | 0.42 | 0.94 |
| 2 | 0.94 | 223.85 | 12.73 | 0.23 | 1.08 |
| 3 | 1.02 | 179.43 | 12.31 | 1.27 | 1.06 |
| 4 | 1.39 | 134.04 | 14.47 | 0.65 | 1.24 |
| 平均值 | 12.67 | 0.64 | 1.08 |
表3 不同油滴破碎Weber数和毛细管数对比
Table 3 Comparison of We and Ca number for oil droplets of different sizes
| 序号 | 粒径/mm | 湍动能耗散率/m2/s3 | 临界Weber数 | 水力旋流器Weber数 | 毛细管数 |
|---|---|---|---|---|---|
| 1 | 0.75 | 270.08 | 11.18 | 0.42 | 0.94 |
| 2 | 0.94 | 223.85 | 12.73 | 0.23 | 1.08 |
| 3 | 1.02 | 179.43 | 12.31 | 1.27 | 1.06 |
| 4 | 1.39 | 134.04 | 14.47 | 0.65 | 1.24 |
| 平均值 | 12.67 | 0.64 | 1.08 |
| [1] | 杨拓. 油水分离旋流器油滴运动及其破碎数值模拟[D]. 武汉: 华中科技大学, 2015. |
| Yang T. Study on numerical simulation of oil droplets movement and breakage in oil-water hydrocyclones[D]. Wuhan: Huazhong University of Science and Technology, 2015. | |
| [2] | 王振波, 马艺, 金有海. 导叶式旋流器内油滴的聚结破碎及影响因素[J]. 化工学报, 2011, 62(2): 399-406. |
| Wang Z B, Ma Y, Jin Y H. Droplet coalescence and breakup and its influence factors in vane-guided hydrocyclone[J]. CIESC Journal, 2011, 62(2): 399-406. | |
| [3] | Kolmogorov A N. On the breakage of drops in a turbulent flow[C]//Tikhomirov V M, ed. Selected Works of A. N. Kolmogorov. Dordrecht: Kluwer Academic Publishers, 1991: 339-343. |
| [4] | Gay J C, Triponey G, Bezard C, et al. Rotary cyclone will improve oily water treatment and reduce space requirement/weight on offshore platforms[C]//SPE Offshore Europe. Richardson: Society of Petroleum Engineers, 1987: SPE 16571-MS. |
| [5] | Comert S, Khan R, King C, et al. Get inline: continuous, instant, concurrent three-phase separation[C]//Abu Dhabi International Petroleum Exhibition & Conference. Richardson: Society of Petroleum Engineers, 2019: SPE 197566-MS. |
| [6] | 蒋明虎, 王尊策, 刘晓敏, 等. 油水分离用复合式水力旋流器结构设计[J]. 流体机械, 2002, 30(6): 17-19. |
| Jiang M H, Wang Z C, Liu X M, et al. Structural design of compound hydrocyclones for oil/water separation[J]. Fluid Machinery, 2002, 30(6): 17-19. | |
| [7] | 刘培启, 周运志, 任帅, 等. 一种双叶轮动态旋流分离器的分离性能[J]. 石油学报(石油加工), 2018, 34(2): 299-306. |
| Liu P Q, Zhou Y Z, Ren S, et al. Separating Performance of Double-Impeller Dynamic Hydrocyclone[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2018, 34(2): 299-306. | |
| [8] | Vatin N, Nemova D, Kharkov N. Method of numerical simulation of a centrifugal separator for cleaning petroleum products[J]. Applied Mechanics and Materials, 2014, 680: 354-358. |
| [9] | Guo G D, Deng S S. Research on dispersed oil droplets breakage and emulsification in the dynamic oil and water hydrocyclone[J]. Advance Journal of Food Science and Technology, 2013, 5(8): 1110-1116. |
| [10] | Morales R, Pereyra E, Wang S B, et al. Droplet formation through centrifugal pumps for oil-in-water dispersions[J]. SPE Journal, 2013, 18(1): 172-178. |
| [11] | Perissinotto R M, Monte Verde W, de Castro M S, et al. Experimental investigation of oil drops behavior in dispersed oil-water two-phase flow within a centrifugal pump impeller[J]. Experimental Thermal and Fluid Science, 2019, 105: 11-26. |
| [12] | Perissinotto R M, Monte Verde W, Gallassi M, et al. Experimental and numerical study of oil drop motion within an ESP impeller[J]. Journal of Petroleum Science and Engineering, 2019, 175: 881-895. |
| [13] | Perissinotto R M, Monte Verde W, Perles C E, et al. Experimental analysis on the behavior of water drops dispersed in oil within a centrifugal pump impeller[J]. Experimental Thermal and Fluid Science, 2020, 112: 109969. |
| [14] | Perissinotto R M, Monte Verde W, Biazussi J L, et al. Flow visualization in centrifugal pumps: a review of methods and experimental studies[J]. Journal of Petroleum Science and Engineering, 2021, 203: 108582. |
| [15] | Leuchtenberger R F, Biazussi J L, Bannwart A C. Experimental and theoretical modeling of droplet break-up of W/O emulsion flow in ESPs[J]. Chemical Engineering Research and Design, 2024, 210: 724-734. |
| [16] | Kim J, Ahn D, Park S, et al. Table-top numbering-up 3D-printed miniaturized hydrocyclone for high-efficiency and high-throughput separation of oil-in-water emulsions[J]. Separation and Purification Technology, 2024, 336: 126165. |
| [17] | Hinze J O. Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes[J]. AIChE Journal, 1955, 1(3): 289-295. |
| [18] | Pereyra E, Shoham O. Unified maximum particle size prediction for turbulent dilute dispersions[J]. Journal of Petroleum Science and Engineering, 2015, 127: 190-195. |
| [19] | Lemenand T, Della Valle D, Dupont P, et al. Turbulent spectrum model for drop-breakup mechanisms in an inhomogeneous turbulent flow[J]. Chemical Engineering Science, 2017, 158: 41-49. |
| [20] | Weber M. Das allgemeine Ähnlichkeitsprinzip der Physik und sein Zusammenhang mit der Dimensionslehre und der Modellwissenschaft[M]//STG. Jahrbuch der Schiffbautechnischen Gesellschaft (31. Band). Berlin, Heidelberg: Springer Berlin Heidelberg, 1930: 274-354. |
| [21] | 田洋阳. 预分水力旋流器导叶结构设计与性能研究[D]. 东营: 中国石油大学(华东), 2019. |
| Tian Y Y. Study on the guide vane structure design and performance of pre-separate hydrocyclone[D]. Dongying: China University of Petroleum (Huadong), 2019. | |
| [22] | 张鹏举. 液液分散体系中液滴破碎机理的实验研究[D]. 北京: 北京化工大学, 2016. |
| Zhang P J. Experimental study of drop breakup mechanisim in liquid-liquid dispersion system[D]. Beijing: Beijing University of Chemical Technology, 2016. | |
| [23] | 易磊. 液液两相剪切湍流中液滴统计特性与湍流输运的研究[D]. 北京: 清华大学, 2023. |
| Yi L. Investigation of droplet statistics and momentum transport of emulsions in a turbulent shear flow[D]. Beijing: Tsinghua University, 2023. | |
| [24] | 杨琳, 梁政. 液-液水力旋流器油水乳化机理研究[J]. 石油机械, 2007, 35(12): 8-11. |
| Yang L, Liang Z. Study of oil-water emulsion mechanism in hydrocyclone for oil-water separation[J]. China Petroleum Machinery, 2007, 35(12): 8-11. | |
| [25] | Herø E H, La Forgia N, Solsvik J, et al. Single drop breakage in turbulent flow: Statistical data analysis[J]. Chemical Engineering Science: X, 2020, 8: 100082. |
| [26] | 舒朝晖, 刘根凡, 陈文梅, 等. 用于油水分离的水力旋流器中液滴破碎研究进展[J]. 流体机械, 2002, 30(7): 29-32. |
| Shu Z H, Liu G F, Chen W M, et al. Review on the study for the breakage of drops in hydrocyclones for oil-water separation[J]. Fluid Machinery, 2002, 30(7): 29-32. | |
| [27] | Achour L, Specklin M, Asuaje M, et al. A review of emulsion flows, their characterization and their modeling in pumps[J]. Chemical Engineering Research and Design, 2024, 205: 538-555. |
| [28] | 常珊珊. 油水混合器湍流场中油滴变形与破碎特性研究[D]. 西安: 西安石油大学, 2025. |
| Chang S S. Study on the deformation and breakup characteristics of oil droplets in the turbulent flow field of an oil-water mixer[D]. Xi'an: Xi'an Shiyou University, 2025. | |
| [29] | Walter J F, Blanch H W. Bubble break-up in gas: liquid bioreactors: Break-up in turbulent flows[J]. The Chemical Engineering Journal, 1986, 32(1): B7-B17. |
| [30] | Li X J, Chen B, Luo X W, et al. Effects of flow pattern on hydraulic performance and energy conversion characterisation in a centrifugal pump[J]. Renewable Energy, 2020, 151: 475-487. |
| [31] | Zeng X B, Zhao L, Zhao W G, et al. Experimental study on a novel axial separator for oil–water separation[J]. Industrial & Engineering Chemistry Research, 2020, 59(48): 21177-21186. |
| [32] | 曹仲文, 袁惠新. 用量纲方法分析旋流场中的应力[J]. 流体机械, 2005, 33(7): 30-32, 51. |
| Cao Z W, Yuan H X. Investigation of stress in a hydrocyclone field with dimension[J]. Fluid Machinery, 2005, 33(7): 30-32, 51. |
| [1] | 段浩磊, 陈浩远, 梁坤峰, 王林, 陈彬, 曹勇, 张晨光, 李硕鹏, 朱登宇, 何亚茹, 杨大鹏. 纯电动车热管理系统低GWP工质替代方案性能分析与综合评价[J]. 化工学报, 2025, 76(S1): 54-61. |
| [2] | 郭松源, 周晓庆, 缪五兵, 汪彬, 耑锐, 曹庆泰, 陈成成, 杨光, 吴静怡. 火箭上升段含多孔板液氧贮箱增压输运数值研究[J]. 化工学报, 2025, 76(S1): 62-74. |
| [3] | 王俊鹏, 冯佳琪, 张恩搏, 白博峰. 曲折式与阵列式迷宫阀芯结构内流动与空化特性研究[J]. 化工学报, 2025, 76(S1): 93-105. |
| [4] | 赵子祥, 段钟弟, 孙浩然, 薛鸿祥. 大温差两相流动诱导水锤冲击的数值模型[J]. 化工学报, 2025, 76(S1): 170-180. |
| [5] | 曹庆泰, 郭松源, 李建强, 蒋赞, 汪彬, 耑锐, 吴静怡, 杨光. 负过载下多孔隔板对液氧贮箱蓄液性能的影响研究[J]. 化工学报, 2025, 76(S1): 217-229. |
| [6] | 孙九春, 桑运龙, 王海涛, 贾浩, 朱艳. 泥水盾构仓体内射流对泥浆输送特性影响研究[J]. 化工学报, 2025, 76(S1): 246-257. |
| [7] | 孔俊龙, 毕扬, 赵耀, 代彦军. 储能电池直冷热管理系统的模拟实验[J]. 化工学报, 2025, 76(S1): 289-296. |
| [8] | 燕子腾, 詹飞龙, 丁国良. 空调用套管式分流器结构设计及分流效果验证[J]. 化工学报, 2025, 76(S1): 152-159. |
| [9] | 解勤勤, 翁俊旗, 林振利, 叶光华, 周兴贵. 固定床反应器中甲醇制芳烃工业催化剂结构影响的研究[J]. 化工学报, 2025, 76(9): 4487-4498. |
| [10] | 张帅, 徐嘉宇, 华蕾娜, 葛蔚. 气固系统的CG-DPM与MP-PIC耦合模拟方法[J]. 化工学报, 2025, 76(9): 4412-4424. |
| [11] | 曹潇风, 张华海, 王江云, 王利民. 锥形气体层流元件结构设计及流动特性研究[J]. 化工学报, 2025, 76(9): 4440-4448. |
| [12] | 贾志勇, 沈宪琨, 蓝晓程, 王铁峰. 气体密度对高压流态化影响的CFD-DEM模拟[J]. 化工学报, 2025, 76(9): 4383-4397. |
| [13] | 刘奕扬, 邢志祥, 刘烨铖, 彭明, 李玉洋, 李云浩, 沈宁舟. 加氢站液氢泄漏扩散特性与安全监测数值模拟研究[J]. 化工学报, 2025, 76(9): 4694-4708. |
| [14] | 邹家庆, 张肇钰, 张建国, 张博宇, 刘定胜, 毛庆, 王挺, 李建军. 碱水制氢电解槽极板通道中气泡的生成及演化性质[J]. 化工学报, 2025, 76(9): 4786-4799. |
| [15] | 陈昇, 李子争, 苗超, 白学刚, 李飞, 刘家璇, 李天天, 杨爽, 吕蓉蓉, 王江云. 大尺度密集场景高危氯气非均匀湍流扩散特性三维CFD模拟[J]. 化工学报, 2025, 76(9): 4630-4643. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号