化工学报

• •    

基于双阶段双通道深度学习的化工故障分类模型

刘秀玥1(), 张佳鑫2, 宋朝阳1, 董立春1()   

  1. 1.重庆大学化学化工学院,重庆 400044
    2.河北科技师范学院化学工程学院,河北 秦皇岛,066000
  • 收稿日期:2025-11-25 修回日期:2025-12-28 出版日期:2026-01-04
  • 通讯作者: 董立春
  • 作者简介:刘秀玥 (2001—),女,硕士研究生,202418021066@stu.cqu.edu.cn
  • 基金资助:
    国家自然科学基金项目(22202024);重庆市自然科学基金创新发展联合基金项目(CSTB2023NSCQ-LZX0070)

A two-stage dual-channel deep learning model for chemical fault classification

Xiuyue LIU1(), Jiaxin ZHANG2, Chaoyang SONG1, Lichun DONG1()   

  1. 1.School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
    2.College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066000, Hebei, China
  • Received:2025-11-25 Revised:2025-12-28 Online:2026-01-04
  • Contact: Lichun DONG

摘要:

深度学习模型在化工故障诊断中具备较好的特征提取能力,但在非线性高维工况下,单一网络难以同时捕捉长短期时序依赖,易产生信息缺失与特征冗余。本文提出双阶段双通道多头自注意力故障分类模型。第一阶段采用GRU–LSTM双通道并行提取互补时序表征:LSTM捕获长期时序依赖特征,GRU捕获短期时序依赖特征;并通过多头自注意力完成融合与赋权,突出关键特征并抑制冗余。随后依据故障混淆值将故障划分为E类与H类,H类故障进入第二阶段,利用动态核PCA计算T²与SPE统计值并构建增强特征矩阵,提升模型对微弱偏移、渐变退化与传播型异常的灵敏度。田纳西–伊斯曼过程实验表明,该模型在检测与诊断精度、鲁棒性与泛化性方面优于明显对比方法。

关键词: 深度学习, 故障诊断, 多头自注意力机制, 双通道结构, 双阶段诊断

Abstract:

Deep learning models exhibit strong feature extraction capability for chemical-process fault diagnosis. However, under nonlinear and high-dimensional operating conditions, a single network often fails to capture both long- and short-term temporal dependencies simultaneously, leading to information loss and feature redundancy. To address this issue, this paper proposes a two-stage, dual-channel, multi-head self-attention fault classification model. In the first stage, a parallel GRU–LSTM dual-channel architecture is employed to learn complementary temporal representations: the LSTM branch captures long-term temporal dependencies, whereas the GRU branch focuses on short-term dynamics. Multi-head self-attention is then used to fuse and reweight the extracted features, emphasizing informative patterns while suppressing redundancy. Subsequently, based on fault confusion values, faults are divided into E-type and H-type categories. H-type faults are further processed in the second stage, where dynamic kernel PCA is applied to compute the Hotelling's (T2) and SPE statistics and construct an augmented feature matrix, thereby improving sensitivity to weak shifts, gradual degradation, and propagation-related anomalies. Experiments on the Tennessee Eastman process demonstrate that the proposed model outperforms representative baseline methods in detection and diagnosis accuracy, robustness, and generalization capability.

Key words: deep learning, fault diagnosis, multi-head self-attention mechanism, dual-channel structure, two-stage fault diagnosis

中图分类号: