化工学报 ›› 2016, Vol. 67 ›› Issue (5): 1635-1643.DOI: 10.11949/j.issn.0438-1157.20151581
刘芳, 樊丰涛, 吕玉翠, 张双, 赵朝成
收稿日期:
2015-10-19
修回日期:
2015-11-27
出版日期:
2016-05-05
发布日期:
2016-05-05
通讯作者:
刘芳
基金资助:
中国石油大学(华东)拔尖人才资助项目;中国石油大学(华东)金点子项目。
LIU Fang, FAN Fengtao, LÜ Yucui, ZHANG Shuang, ZHAO Chaocheng
Received:
2015-10-19
Revised:
2015-11-27
Online:
2016-05-05
Published:
2016-05-05
Supported by:
supported by the Top-Notch Talent Program of China University of Petroleum (East China) and the Golden Idea Program of China University of Petroleum (East China).
摘要:
石墨烯是一种新型的碳纳米材料,具有超大的比表面积和优良的导电性能,将石墨烯与TiO2复合可显著提高复合材料的光催化性能,在光催化领域具有广泛的应用前景。主要介绍了石墨烯/TiO2复合纳米材料的制备方法以及在光催化降解有机污染物方面的应用,并分析了石墨烯/TiO2复合材料促进光催化机理,最后对石墨烯/TiO2复合光催化剂未来的发展趋势提出了展望。
中图分类号:
刘芳, 樊丰涛, 吕玉翠, 张双, 赵朝成. 石墨烯/TiO2复合材料光催化降解有机污染物的研究进展[J]. 化工学报, 2016, 67(5): 1635-1643.
LIU Fang, FAN Fengtao, LÜ Yucui, ZHANG Shuang, ZHAO Chaocheng. Research progress on photocatalytic degradation of organic pollutants by graphene/TiO2 composite materials[J]. CIESC Journal, 2016, 67(5): 1635-1643.
[1] | Daghrir R, Drogui P, Robert D. Modified TiO2 for environmental photocatalytic applications: a review [J]. Industrial & Engineering Chemistry Research, 2013, 52(10): 3581-3599. |
[2] | Yang G D, Jiang Z, Shi H H, et al. Preparation of highly visible-light active N-doped TiO2 photocatalyst [J]. Journal of Materials Chemistry, 2010, 20(25): 5301-5309. |
[3] | Li H X, Bian Z F, Zhu J, et al. Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity [J]. Journal of the American Chemical Society, 2007, 129(15): 4538-4538. |
[4] | Janitabar S. Investigation of phase transformations and photocatalytic properties of sol-gel prepared nanostructured ZnO/TiO2 composites [J]. Journal of Alloys & Compounds, 2009, 486(1): 805-808. |
[5] | Zhang J, Peng W Q, Chen Z H, et al. Effect of cerium doping in the TiO2 photoanode on the electron transport of dye-sensitized solar cells [J]. The Journal of Physical Chemistry C, 2012, 116(36): 19182-19190. |
[6] | Tryba B, Morawski A W, Inagaki M. Application of TiO2-mounted activated carbon to the removal of phenol from water [J]. Applied Catalysis B: Environmental, 2003, 41(4): 427-433. |
[7] | Yao Y, Li G H, Ciston S, et al. Photoreactive TiO2/carbon nanotube composites: synthesis and reactivity [J]. Environmental Science & Technology, 2008, 42(13): 4952-4957. |
[8] | Liang Y Y, Wang H L, Casalongue H S, et al. TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials [J]. Nano Research, 2010, 3(10): 701-705. |
[9] | GEIM A K. The rise of graphene [J]. Nature Material, 2007, 6(3): 183-191. |
[10] | Zhang Y, Tan Y W, Stormer H L, et al. Experimental observation of the quantum hall effect and berry's phase in graphene [J]. Nature, 2005, 438(7065): 201-204. |
[11] | McAllister M J, Li J L, Adamson D H, et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite [J]. Chemistry of Materials, 2007, 19(18): 4396-4404. |
[12] | Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene [J]. Nano Letters, 2008, 8(3): 902-907. |
[13] | Stoller M D, Park S, Zhu Y, et al. Graphene-based ultracapacitors [J]. Nano Letters, 2008, 8(10): 3498-3502. |
[14] | Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films [J]. Science (New York, NY), 2004, 306(5696): 666-669. |
[15] | Emtsev K V, Bostwick A, Horn K, et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide [J]. Nature Materials, 2009, 8(3): 203-207. |
[16] | Petrone N, Dean C R, Meric I, et al. Chemical vapor deposition-derived graphene with electrical performance of exfoliated graphene [J]. Nano Letters, 2012, 12(6): 2751-2756. |
[17] | Park S, Ruoff R S. Chemical methods for the production of graphenes [J]. Nature Nanotechnology, 2009, 4(4): 217-224. |
[18] | 何大方, 吴健, 刘战剑, 等. 面向应用的石墨烯制备研究进展 [J]. 化工学报, 2015, 66(8):2888-2894.DOI: 10.11949/j.issn.0438-1157. 20150738. HE D F, WU J, LIU Z J, et al. Recent advances in preparation of graphene for applications [J]. CIESC Journal, 2015, 66(8):2888-2894. DOI: 10.11949/j.issn.0438-1157.20150738. |
[19] | Williams G, Seger B, Kamat P V. TiO2-graphene nanocomposites.UV-aassisted photocatalytic reduction of graphene oxide [J]. ACS Nano, 2008, 2(7): 1487-1491. |
[20] | 崔汶静, 陈建, 谢纯, 等. 石墨烯负载二氧化钛复合材料及光催化降解甲基橙 [J]. 碳素, 2012, (1): 40-44. DOI: 10.3969/j.issn1001-8948.2012.01-009. CUI W J, CHEN J, XIE C, et al. The composite of titanium dioxide/graphene sheets and photocatalytic degradation of methyl orange [J]. Carbon, 2012, (1): 40-44. DOI: 10.3969/j.issn1001-8948. 2012.01-009. |
[21] | Wang W G, Yu J G, Xiang Q J, et al. Enhanced photocatalytic activity of hierarchical macro/mesoporous TiO2-graphene composites for photodegradation of acetone in air [J]. Applied Catalysis B: Environmental, 2012, 119/120(3): 109-116. |
[22] | 雷雪飞, 薛向欣, 杨合. 氮掺杂钛精矿的制备及其可见光催化活性 [J]. 功能材料, 2013, 44(5): 718-726. Lei X F, Xue X X, Yang H. Preparation of nitric acid-modified titanium ore and its visible-light photocatalytic activity [J]. Journal of Functional Materials, 2013, 44(5): 718-726. |
[23] | 陈春明, 陈中华, 曾幸荣. 热还原法制备氧化石墨烯/TiO2复合材料及其光催化性能研究 [J]. 功能材料, 2015, 46(16): 16152-16156. DOI: 10.3969/j.issn.1001-9731.2015.16.028. CHEN C M, CHEN Z H, ZENG X R. Synthesis of graphene oxide/titanium dioxide composite material by thermal reduction method and its photocatalytic activity [J]. Journal of Functional Materials, 2015, 46(16): 16152-16156. DOI: 10.3969/j.issn. 1001-9731.2015.16.028. |
[24] | 耿静漪, 朱新生, 杜玉扣. TiO2-石墨烯光催化剂: 制备及引入石墨烯的方法对光催化性能的影响 [J]. 无机化学学报, 2012, 28(2): 357-361. GENG J Y, ZHU X S, DU Y K. TiO2-graphene photocatalyst: preparation and effect of the introduction of graphene on photocatalytic performance [J]. Chinese Journal of Inorganic Chemistry, 2012, 28(2): 357-361. |
[25] | 裴福云, 徐慎刚, 刘应良, 等. 染料敏化二氧化钛-石墨烯杂化材料光催化水分解制氢 [J]. 化工学报, 2013, 64(8): 3062-3069. DOI: 10.3969/j.issn.0438-1157.2013.08.051. PEI F Y, XU S G, LIU Y L, et al. Photocatalytic hydrogen evolution from water by dye-sensitized titania/graphene nanocomposite [J]. CIESC Journal, 2013, 64(8): 3062-3069. DOI: 10.3969/j.issn. 0438-1157.2013.08.051. |
[26] | Khalid N R, Ahmed E, Hong Z L, et al. Enhanced photocatalytic activity of grapheme-TiO2 composite under visible light irradiation [J]. Current Applied Physics, 2013, 13(4): 659-663. |
[27] | Zhao H M, Su F, Fan X F, et al. Graphene-TiO2 composite photocatalyst with enhanced photocatalytic performance [J]. Chinese Journal of Catalysis, 2012, 33(5): 777-782. |
[28] | Liang Y Y, Wang H L, Casalongue H S, et al. TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials [J]. Nano Research, 2010, 3(10): 701-705. |
[29] | Lambert T N, Chavez C A, Bell N S, et al. Large area mosaic films of grapheme-titania: self-assembly at the liquid-air interface and photo-responsive behavior [J]. Nanoscale, 2010, 3(1): 188-191. |
[30] | Liu J C, Liu L, Bai H W, et al. Gram-scale production of graphene oxide-TiO2 nanorod composites: towards high-activity photocatalytic materials [J]. Applied Catalysis B: Environmental, 2011, 106(1): 76-82. |
[31] | Meng X B, Geng D S, Liu J, et al. Controllable synthesis of graphene-based titanium dioxide nanocomposites by atomic layer deposition [J]. Nanotechnology, 2011, 22(16): 165602-165611. |
[32] | Bell N J, Ng Y N, Du A, et al. Understanding the enhancement in photoelectrochemical properties of photocatalytically prepared TiO2-reduced graphene oxide composite [J]. Journal of Physical Chemistry C, 2011, 115(13): 6004-6009. |
[33] | Lightcap I V, Kosel T H, Kamat P V. Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. storing and shuttling electrons with reduced graphene oxide [J]. Nano Letters, 2010, 10(2): 577-583. |
[34] | Kamat P V. Graphene-based nanoarchitectures. anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support [J]. Journal of Physical Chemistry Letters, 2009, 1(2): 520-527. |
[35] | Lee J S, You K H, Park C B. Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene [J]. Advanced Materials, 2012, 24(8): 1084-1088. |
[36] | Allen M J, Tung V C, Kaner R B. Honeycomb carbon: a review of graphene [J]. Chemical Reviews, 2010, 110(1): 132-145. |
[37] | Anandan S, Rao T N, Sathish M, et al. Superhydrophilic graphene-loaded TiO2 thin film for self-cleaning applications [J]. ACS Applied Materials & Interfaces, 2012, 5(1): 207-212. |
[38] | Shah M, Park A R, Zhang K, et al. Green synthesis of biphasic TiO2-reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity [J]. ACS Applied Materials & Interfaces, 2012, 4(8): 3893-3901. |
[39] | Chen C, Cai W, Long M, et al. Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction [J]. ACS Nano, 2010, 4(11): 6425-6432. |
[40] | Ng Y H, Lightcap I V, Goodwin K, et al. To what extent do graphene scaffolds improve the photovoltaic and photocatalytic response of TiO2 nanostructured films [J]. Journal of Physical Chemistry Letters, 2010, 1(15): 2222-2227. |
[41] | Zhang H, Lv X J, Li Y M, et al. P25-graphene composite as a high performance photocatalyst [J]. ACS Nano, 2010, 4(1): 380-386. |
[42] | Thomas W R, Amir Y. Nanomaterials: graphene rests easy [J]. Nature Nanotechnology, 2010, 5(10): 699-700. |
[43] | Novoselov K S, Jiang Z, Zhang Y, et al. Room-temperature quantum hall effect in graphene [J]. Science, 2007, 315(5817): 1379. |
[44] | Luo L J, Zhang X J, Ma F J, et al. Photocatalytic degradation of bisphenol A by TiO2-reduced graphene oxide nanocomposites [J]. Reaction Kinetics Mechanisms & Catalysis, 2014, 114(1): 311-322. |
[45] | Kim H I, Moon G H, Monllor S D, et al. Solar photoconversion using graphene/TiO2 composites: nanographene shell on TiO2 core versus TiO2 nanoparticles on graphene sheet [J]. Journal of Physical Chemistry C, 2011, 116(1): 1535-1543. |
[46] | Zhou X, Shi T J, Wu J, et al. Facet-exposed anatase-phase TiO2 nanotube hybrid reduced graphene oxide composite: synthesis, characterization and application in photocatalytic degradation [J]. Applied Surface Science, 2013, 287(2): 359-368. |
[47] | Du J, Lai X, Yang N, et al. Hierarchically ordered macro-mesoporous TiO2-graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities [J]. ACS Nano, 2011, 5(1): 590-596. |
[48] | Khalid N R, Ahmed E, Hong Z L, et al. Cu-doped TiO2 nanoparticles/graphene composites for efficient visible-light photocatalysis [J]. Ceramics International, 2013, 39(6):7107-7113. |
[49] | Khalid N R, Hong Z L, Ahmed E, et al. Synergistic effects of Fe and graphene on photocatalytic activity enhancement of TiO2 under visible light [J]. Applied Surface Science, 2012, 258(15): 5827-5834. |
[50] | Li Z Q, Wang H L, Zi L Y, et al. Preparation and photocatalytic performance of magnetic TiO2-Fe3O4/graphene(RGO) composites under VIS-light irradiation [J]. Ceramics International, 2015, 41(9):10634-10643. |
[51] | Sun M X, Fang Y L, Wang Y, et al. Synthesis of Cu2O/graphene/rutile TiO2 nanorod ternary composites with enhanced photocatalytic activity [J]. Journal of Alloys and Compounds, 2015, 650:520-527. |
[52] | Ghasemi S, Setayesh S R, Habibi-Yangjeh A, et al. Assembly of CeO2-TiO2 nanoparticles prepared in room temperature ionic liquid on graphene nanosheets for photocatalytic degradation of pollutants [J]. Journal of Hazardous Materials, 2012, 199/200(2): 170-178. |
[53] | Wen Y Y, Ding H M, Shan Y K. Preparation and visible light photocatalytic activity of Ag/TiO2/graphene nanocomposite [J]. Nanoscale, 2011, 3(10): 4411-4417. |
[54] | Li K X, Huang Y, Yan L S, et al. Simulated sunlight photodegradation of aqueous atrazine and rhodamine B catalyzed by the ordered mesoporous grapheme-titania/silica composite material [J]. Catalysis Communications, 2012, 18(1): 16-20. |
[55] | Rong X S, Qiu F X, Zhang C, et al. Preparation of Ag-AgBr/TiO2-graphene and its visible light photocatalytic activity enhancement for the degradation of polyacrylamide [J]. Journal of Alloys & Compounds, 2015, 639: 153-161. |
[56] | Hsieh S H, Chen W J, Wu C T. Pt-TiO2/graphene photocatalysts for degradation of AO7 dye under visible light [J]. Applied Surface Science, 2015, 340: 9-17. |
[57] | Zhu L, Jo S B, Ye S, et al. Rhodamine B degradation and reactive oxygen species generation by a ZnSe-graphene/TiO2 sonocatalyst [J]. Chinese Journal of Catalysis, 2014, 35(11): 1825-1832. |
[58] | PARK C Y, KEFAYAT U, VIKRAM N, et al. Preparation of novel CdS-graphene/TiO2 composites with high photocatalytic activity for methylene blue dye under visible light [J]. Bulletin of Materials Science, 2013, 36(5): 869-876. |
[59] | ROSO M, LORENZETTI A, BOARETTI C, et al. Graphene/TiO2 based photo-catalysts on nanostructured membranes as a potential active filter media for methanol gas-phase degradation [J]. Applied Catalysis B: Environmental, 2015, 176: 225-232. |
[60] | JO W K. Coupling of graphene oxide into titania for purification of gaseous toluene under different operational conditions [J]. Vacuum, 2014, 99(1): 22-25. |
[1] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[2] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[3] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[4] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[5] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[6] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[7] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[8] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[9] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[10] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[11] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[12] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[13] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[14] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[15] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||