化工学报 ›› 2022, Vol. 73 ›› Issue (5): 2140-2148.DOI: 10.11949/0438-1157.20211692
收稿日期:
2021-11-29
修回日期:
2022-01-27
出版日期:
2022-05-05
发布日期:
2022-05-24
通讯作者:
李松庚
作者简介:
王佳怡(1996—),女,硕士研究生,基金资助:
Jiayi WANG1,2(),Chuigang FAN1,2,Songgeng LI1,3()
Received:
2021-11-29
Revised:
2022-01-27
Online:
2022-05-05
Published:
2022-05-24
Contact:
Songgeng LI
摘要:
在450℃对神木煤制半焦还原NO进行研究,采用Raman、FT-IR、XPS等分析方法探究了半焦脱硝影响因素与其表面碳氧官能团的关系。结果表明:热解制焦温度、烟气中氧气浓度以及负载金属对脱硝效果的影响都与半焦表面碳氧官能团有关,降低热解温度、增大氧气浓度、负载金属均有利于增加C—O官能团。采用XPS表征对金属负载半焦表面的碳氧官能团进行分析,发现热力学相对稳定的C—O官能团含量与脱硝指标之间存在明显的线性关系(R2>0.96)。研究进一步揭示了热力学稳定的C—O官能团在半焦脱硝过程的重要地位。
中图分类号:
王佳怡, 范垂钢, 李松庚. 碳氧官能团对煤焦低温还原NO的影响[J]. 化工学报, 2022, 73(5): 2140-2148.
Jiayi WANG, Chuigang FAN, Songgeng LI. Role of carbon-oxygen complexes on low temperature reduction of NO by coal char[J]. CIESC Journal, 2022, 73(5): 2140-2148.
工业分析/%(质量,ad) | 元素分析/%(质量,ad) | BET表征 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | A | V | FC | C | H | N | O① | S | 比表面积/(m2·g-1) | 孔容/(cm3·g-1) | 平均孔径/nm | ||
0.76 | 6.64 | 13.95 | 78.66 | 85.38 | 2.34 | 1.41 | 3.35 | 0.13 | 14.59 | 0.018 | 5.026 |
表1 神木半焦工业分析和元素分析及BET表征
Table 1 Proximate and ultimate analysis of coal char and BET analysis
工业分析/%(质量,ad) | 元素分析/%(质量,ad) | BET表征 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | A | V | FC | C | H | N | O① | S | 比表面积/(m2·g-1) | 孔容/(cm3·g-1) | 平均孔径/nm | ||
0.76 | 6.64 | 13.95 | 78.66 | 85.38 | 2.34 | 1.41 | 3.35 | 0.13 | 14.59 | 0.018 | 5.026 |
Fe2O3/% | Al2O3/% | CaO/ % | MgO/% | SiO2/ % | TiO2/% | SO3/ % | K2O/ % | Na2O/% | 合计/% |
---|---|---|---|---|---|---|---|---|---|
6.69 | 17.10 | 22.92 | 1.85 | 38.39 | 0.88 | 9.02 | 0.75 | 0.67 | 98.30 |
表2 神木半焦灰分中金属氧化物质量分数
Table 2 Metallic oxides mass fraction of char ash
Fe2O3/% | Al2O3/% | CaO/ % | MgO/% | SiO2/ % | TiO2/% | SO3/ % | K2O/ % | Na2O/% | 合计/% |
---|---|---|---|---|---|---|---|---|---|
6.69 | 17.10 | 22.92 | 1.85 | 38.39 | 0.88 | 9.02 | 0.75 | 0.67 | 98.30 |
状态 | 反应气氛 | AC—O/Aarom | AC |
---|---|---|---|
反应前 | — | 0 | 0.49 |
反应后 | 0%(体积)O2 | 0.12 | 1.76 |
1%(体积)O2 | 0.43 | 2.62 | |
5%(体积)O2 | 0.63 | 2.64 |
表3 反应前后半焦表面含氧官能团分布
Table 3 Oxygen-containing groups contents of different chars
状态 | 反应气氛 | AC—O/Aarom | AC |
---|---|---|---|
反应前 | — | 0 | 0.49 |
反应后 | 0%(体积)O2 | 0.12 | 1.76 |
1%(体积)O2 | 0.43 | 2.62 | |
5%(体积)O2 | 0.63 | 2.64 |
半焦 | C—C, C—H | C—O | R2C | O | C—K | |||||
---|---|---|---|---|---|---|---|---|---|---|
BE/eV | Prop./ %(mol) | BE/eV | Prop./ %(mol) | BE/eV | Prop./ %(mol) | BE/eV | Prop./ %(mol) | BE/eV | Prop./ %(mol) | |
SM | 284.8 | 81.92 | 286.3 | 12.10 | 287.5 | 0.41 | 289.0 | 4.61 | 296.2 | 0.96 |
SM-2%MgO | 284.8 | 59.46 | 286.3 | 12.14 | 287.5 | 23.01 | 289.0 | 0.86 | 296.2 | 4.53 |
SM-2%K2O | 284.8 | 57.42 | 286.3 | 17.05 | 287.5 | 0.00 | 289.0 | 13.96 | 296.2 | 11.56 |
SM-0.5%Na2O | 284.8 | 74.45 | 286.3 | 15.31 | 287.5 | 0.49 | 289.0 | 8.97 | 296.2 | 0.79 |
表4 脱硝前后半焦表面含氧官能团分布
Table 4 Functionalities of chars estimated by XPS measurement
半焦 | C—C, C—H | C—O | R2C | O | C—K | |||||
---|---|---|---|---|---|---|---|---|---|---|
BE/eV | Prop./ %(mol) | BE/eV | Prop./ %(mol) | BE/eV | Prop./ %(mol) | BE/eV | Prop./ %(mol) | BE/eV | Prop./ %(mol) | |
SM | 284.8 | 81.92 | 286.3 | 12.10 | 287.5 | 0.41 | 289.0 | 4.61 | 296.2 | 0.96 |
SM-2%MgO | 284.8 | 59.46 | 286.3 | 12.14 | 287.5 | 23.01 | 289.0 | 0.86 | 296.2 | 4.53 |
SM-2%K2O | 284.8 | 57.42 | 286.3 | 17.05 | 287.5 | 0.00 | 289.0 | 13.96 | 296.2 | 11.56 |
SM-0.5%Na2O | 284.8 | 74.45 | 286.3 | 15.31 | 287.5 | 0.49 | 289.0 | 8.97 | 296.2 | 0.79 |
评价指标 | C—O | R2C | O |
---|---|---|---|
X | 0.9989 | 0.2921 | 0.9115 |
S | 0.9999 | 0.1025 | 0.6096 |
CO/CO x | 0.9662 | 0.1923 | 0.7920 |
表5 C(O)官能团含量与脱硝指标之间关联度分析
Table 5 Correlation coefficients of C(O) complexes with NO-char evaluating indexes
评价指标 | C—O | R2C | O |
---|---|---|---|
X | 0.9989 | 0.2921 | 0.9115 |
S | 0.9999 | 0.1025 | 0.6096 |
CO/CO x | 0.9662 | 0.1923 | 0.7920 |
1 | 中华人民共和国生态环境部. 2019年中国生态环境统计年报[R]. 北京: 中华人民共和国生态环境部, 2021. |
Ministry of Ecology and Environment of the People’s Republic of China. Report on the State of the Ecology and Environment in China 2019[R]. Beijing: Ministry of Ecology and Environment of the People’s Republic of China, 2021. | |
2 | Rezaei F, Rownaghi A A, Monjezi S, et al. SO x /NO x removal from flue gas streams by solid adsorbents: a review of current challenges and future directions[J]. Energy & Fuels, 2015, 29(9): 5467-5486. |
3 | Illán-Gómez M J, Linares-Solano A, Radovic L R, et al. NO reduction by activated carbons (7): Some mechanistic aspects of uncatalyzed and catalyzed reaction[J]. Energy & Fuels, 1996, 10(1): 158-168. |
4 | Gupta H, Fan L S. Reduction of nitric oxide from combustion flue gas by bituminous coal char in the presence of oxygen[J]. Industrial & Engineering Chemistry Research, 2003, 42(12): 2536-2543. |
5 | Yan W X, Li S G, Fan C G, et al. Effect of surface carbon-oxygen complexes during NO reduction by coal char[J]. Fuel, 2017, 204: 40-46. |
6 | DeGroot W F, Richards G N. Gasification of cellulosic chars in oxygen and in nitrogen oxides[J]. Carbon, 1991, 29(2): 179-183. |
7 | Pevida C, Arenillas A, Rubiera F, et al. Heterogeneous reduction of nitric oxide on synthetic coal chars[J]. Fuel, 2005, 84(17): 2275-2279. |
8 | 赵宗彬, 李文, 李保庆. 半焦制备条件对其还原NO反应性的影响[J]. 煤炭学报, 2002, 27(2): 179-183. |
Zhao Z B, Li W, Li B Q. Effect of preparation conditions on gasification reactivity of char with NO[J]. Journal of China Coal Society, 2002, 27(2): 179-183. | |
9 | Cetin E, Moghtaderi B, Gupta R, et al. Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars[J]. Fuel, 2004, 83(16): 2139-2150. |
10 | Suzuki T, Kyotani T, Tomita A. Study on the carbon-nitric oxide reaction in the presence of oxygen[J]. Industrial & Engineering Chemistry Research, 1994, 33(11): 2840-2845. |
11 | Aarna I, Suuberg E M. The role of carbon monoxide in the NO-Carbon reaction[J]. Energy & Fuels, 1999, 13(6): 1145-1153. |
12 | Tsubouchi N, Ohtsuka Y. Nitrogen release during high temperature pyrolysis of coals and catalytic role of calcium in N2 formation[J]. Fuel, 2002, 81(18): 2335-2342. |
13 | García-García A, Chinchón-Yepes S, Linares-Solano A, et al. NO reduction by potassium-containing coal briquettes. Effect of mineral matter content and coal rank[J]. Energy & Fuels, 1997, 11(2): 292-298. |
14 | Zhao Z B, Qiu J S, Li W, et al. Influence of mineral matter in coal on decomposition of NO over coal chars and emission of NO during char combustion[J]. Fuel, 2003, 82(8): 949-957. |
15 | Yamashita H, Tomita A, Yamada H, et al. Influence of char surface chemistry on the reduction of nitric oxide with chars[J]. Energy & Fuels, 1993, 7(1): 85-89. |
16 | Yang J, Mestl G, Herein D, et al. Reaction of NO with carbonaceous materials (1): Reaction and adsorption of NO on ashless carbon black[J]. Carbon, 2000, 38(5): 715-727. |
17 | Yang J, Mestl G, Herein D, et al. Reaction of NO with carbonaceous materials (2): Effect of oxygen on the reaction of NO with ashless carbon black[J]. Carbon, 2000, 38(5): 729-740. |
18 | 闫文霞. 半焦直接还原氮氧化物机理与实验研究[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2017. |
Yan W X. Mechanism study of NO x reduction by char in flue gas[D]. Beijing: University of Chinese Academy of Sciences(Institute of Process Engineering), 2017. | |
19 | Zhu X L, Sheng C D. Evolution of the char structure of lignite under heat treatment and its influences on combustion reactivity[J]. Energy & Fuels, 2010, 24(1): 152-159. |
20 | Wang B, Sun L S, Su S, et al. Char structural evolution during pyrolysis and its influence on combustion reactivity in air and oxy-fuel conditions[J]. Energy & Fuels, 2012, 26(3): 1565-1574. |
21 | Tay H L, Li C Z. Changes in char reactivity and structure during the gasification of a Victorian brown coal: comparison between gasification in O2 and CO2 [J]. Fuel Processing Technology, 2010, 91(8): 800-804. |
22 | Bueno-López A, Caballero-Suárez J A, García-García A. Kinetic model for the NO x reduction process by potassium containing coal char pellets at moderate temperature (350—450℃) in the presence of O2 and H2O[J]. Fuel Processing Technology, 2006, 87(5): 429-436. |
23 | Xiao Y, Guo T, Shu C M, et al. Effects of oxygen concentrations on the coal oxidation characteristics and functional groups[J]. Journal of Thermal Analysis and Calorimetry, 2020, 142(2): 899-912. |
24 | Wang Z Z, Sun R, Ismail T M, et al. Characterization of coal char surface behavior after a heterogeneous oxidative treatment[J]. Fuel, 2017, 210: 154-164. |
25 | He X Q, Liu X F, Nie B S, et al. FTIR and Raman spectroscopy characterization of functional groups in various rank coals[J]. Fuel, 2017, 206: 555-563. |
26 | Chen Y Y, Mastalerz M, Schimmelmann A. Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy[J]. International Journal of Coal Geology, 2012, 104: 22-33. |
27 | Wu X Y, Song Q, Zhao H B, et al. Catalytic mechanism of inherent potassium on the char-NO reaction[J]. Energy & Fuels, 2015, 29(11): 7566-7571. |
28 | Yang N, Yu J L, Dou J X, et al. The effects of oxygen and metal oxide catalysts on the reduction reaction of NO with lignite char during combustion flue gas cleaning[J]. Fuel Processing Technology, 2016, 152: 102-107. |
29 | Shu Y, Zhang F, Wang F, et al. Catalytic reduction of NO x by biomass-derived activated carbon supported metals[J]. Chinese Journal of Chemical Engineering, 2018, 26(10): 2077-2083. |
30 | 范垂钢, 李松庚. 半焦脱硝体系中重要碳氧中间体结构及其作用[J]. 华电技术, 2020, 42(10): 28-35. |
Fan C G, Li S G. Structure and function of important C/O intermediates in semi-coke DeNO x systems[J]. Huadian Technology, 2020, 42(10): 28-35. | |
31 | Zhao Z B, Li W, Li B Q. Catalytic reduction of NO by coal chars loaded with Ca and Fe in various atmospheres[J]. Fuel, 2002, 81(11): 1559-1564. |
32 | Bueno-López A, García-García A, Caballero-Suárez J A. Development of a kinetic model for the NO x reduction process by potassium-containing coal pellets[J]. Environmental Science & Technology, 2002, 36(24): 5447-5454. |
[1] | 吴馨, 龚建英, 靳龙, 王宇涛, 黄睿宁. 超声波激励下铝板表面液滴群输运特性的研究[J]. 化工学报, 2023, 74(S1): 104-112. |
[2] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[3] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
[4] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[5] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[6] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[7] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[8] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[9] | 朱风, 陈凯琳, 黄小凤, 鲍银珠, 李文斌, 刘嘉鑫, 吴玮强, 高王伟. KOH改性电石渣脱除羰基硫的性能研究[J]. 化工学报, 2023, 74(6): 2668-2679. |
[10] | 张艳梅, 袁涛, 李江, 刘亚洁, 孙占学. 高效SRB混合菌群构建及其在酸胁迫条件下的性能研究[J]. 化工学报, 2023, 74(6): 2599-2610. |
[11] | 胡南, 陶德敏, 杨照岚, 王学兵, 张向旭, 刘玉龙, 丁德馨. 铁炭微电解与硫酸盐还原菌耦合修复铀尾矿库渗滤水的研究[J]. 化工学报, 2023, 74(6): 2655-2667. |
[12] | 王新悦, 王俊杰, 曹思贤, 王翠, 李灵坤, 吴宏宇, 韩静, 吴昊. 玻璃内包材界面修饰对机械应力诱导的单克隆抗体聚集体形成的影响[J]. 化工学报, 2023, 74(6): 2580-2588. |
[13] | 徐文超, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂E-1310对HCFC-141b水合物生成的影响[J]. 化工学报, 2023, 74(5): 2179-2185. |
[14] | 葛运通, 王玮, 李楷, 肖帆, 于志鹏, 宫敬. 多相分散体系中微油滴与改性二氧化硅表面间作用力的AFM研究[J]. 化工学报, 2023, 74(4): 1651-1659. |
[15] | 张梦波, 楼琳瑾, 冯艺荣, 郑雨婷, 张浩淼, 王靖岱, 阳永荣. 烷基铝氧烷合成技术研究进展[J]. 化工学报, 2023, 74(2): 525-534. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||