化工学报 ›› 2022, Vol. 73 ›› Issue (5): 2140-2148.doi: 10.11949/0438-1157.20211692

• 能源和环境工程 • 上一篇    下一篇

碳氧官能团对煤焦低温还原NO的影响

王佳怡1,2(),范垂钢1,2,李松庚1,3()   

  1. 1.中国科学院过程工程研究所多相复杂系统国家重点实验室,北京 100190
    2.中国科学院大学中丹学院,北京 100049
    3.中国科学院大学化学工程学院,北京 100049
  • 收稿日期:2021-11-29 修回日期:2022-01-27 出版日期:2022-05-05 发布日期:2022-05-24
  • 通讯作者: 李松庚 E-mail:echojiayi@outlook.com;sgli@ipe.ac.cn
  • 作者简介:王佳怡(1996—),女,硕士研究生,echojiayi@outlook.com
  • 基金资助:
    国家自然科学基金项目(21978305);山东魏桥创业集团“教育部产学合作协同育人”项目

Role of carbon-oxygen complexes on low temperature reduction of NO by coal char

Jiayi WANG1,2(),Chuigang FAN1,2,Songgeng LI1,3()   

  1. 1.State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
    2.Sino Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
    3.School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2021-11-29 Revised:2022-01-27 Published:2022-05-05 Online:2022-05-24
  • Contact: Songgeng LI E-mail:echojiayi@outlook.com;sgli@ipe.ac.cn

摘要:

在450℃对神木煤制半焦还原NO进行研究,采用Raman、FT-IR、XPS等分析方法探究了半焦脱硝影响因素与其表面碳氧官能团的关系。结果表明:热解制焦温度、烟气中氧气浓度以及负载金属对脱硝效果的影响都与半焦表面碳氧官能团有关,降低热解温度、增大氧气浓度、负载金属均有利于增加C—O官能团。采用XPS表征对金属负载半焦表面的碳氧官能团进行分析,发现热力学相对稳定的C—O官能团含量与脱硝指标之间存在明显的线性关系(R2>0.96)。研究进一步揭示了热力学稳定的C—O官能团在半焦脱硝过程的重要地位。

关键词: 煤焦, 氮氧化物, 还原, 多相反应, 表面, 碳氧官能团

Abstract:

The reduction of NO by Shenmu coal char was studied at 450℃, and the relationship between the influencing factors of coal char denitrification and its surface carbon-oxygen functional groups was explored by Raman, FT-IR, XPS and other analytical methods. Combining the results of isothermal experiments and characterizations, close connection between influencing factors and carbon-oxygen complexes was revealed. The effect of coal char preparation temperature, oxygen concentration in flue gas as well as influence of metallic elements could be in connection with carbon-oxygen complexes on coal char surface. More specifically, lowering pyrolysis temperature, increasing oxygen concentration, and loading metals were all conducive to the retention and formation of thermally stable C—O species on coal char surface. Strong linear relationship was discovered via XPS method between thermally stable C—O species and experimental evaluation indexes (R2>0.96). Carbon-oxygen complexes, especially thermally stable C—O compounds, played a key character in NO reduction by coal char.

Key words: coal char, nitric oxide, reduction, multiphase reaction, surface, C(O) complexes

中图分类号: 

  • TQ 536.9

表1

神木半焦工业分析和元素分析及BET表征"

工业分析/%(质量,ad)元素分析/%(质量,ad)BET表征
MAVFCCHNOS比表面积/(m2·g-1)孔容/(cm3·g-1)平均孔径/nm
0.766.6413.9578.6685.382.341.413.350.1314.590.0185.026

表2

神木半焦灰分中金属氧化物质量分数"

Fe2O3/%Al2O3/%CaO/ %MgO/%SiO2/ %TiO2/%SO3/ %K2O/ %Na2O/%合计/%
6.6917.1022.921.8538.390.889.020.750.6798.30

图1

固定床脱硝装置"

图2

热解制焦温度对脱硝实验的影响"

图3

450、550和650℃温度下热解所得半焦的拉曼光谱"

图4

氧气浓度对NO转化率的影响"

图5

不同氧浓度烟气反应前后半焦红外光谱"

图6

与氧浓度5%(体积)的烟气反应后的半焦红外光谱分峰拟合"

表3

反应前后半焦表面含氧官能团分布"

状态反应气氛AC—O/AaromAC?O/Aarom
反应前00.49
反应后0%(体积)O20.121.76
1%(体积)O20.432.62
5%(体积)O20.632.64

图7

碱/碱土金属对脱硝实验的影响"

图8

原始半焦和负载半焦脱硝反应出口CO x 变化"

图9

脱硝前后半焦的C1s和K2p分峰拟合图"

表4

脱硝前后半焦表面含氧官能团分布"

半焦C—C, C—HC—OR2C??????OO??????C—OC—K
BE/eV

Prop./

%(mol)

BE/eV

Prop./

%(mol)

BE/eV

Prop./

%(mol)

BE/eV

Prop./

%(mol)

BE/eV

Prop./

%(mol)

SM284.881.92286.312.10287.50.41289.04.61296.20.96
SM-2%MgO284.859.46286.312.14287.523.01289.00.86296.24.53
SM-2%K2O284.857.42286.317.05287.50.00289.013.96296.211.56
SM-0.5%Na2O284.874.45286.315.31287.50.49289.08.97296.20.79

表5

C(O)官能团含量与脱硝指标之间关联度分析"

评价指标C—OR2C??????OO??????C—O
X0.99890.29210.9115
S0.99990.10250.6096
CO/CO x0.96620.19230.7920
1 中华人民共和国生态环境部. 2019年中国生态环境统计年报[R]. 北京: 中华人民共和国生态环境部, 2021.
Ministry of Ecology and Environment of the People’s Republic of China. Report on the State of the Ecology and Environment in China 2019[R]. Beijing: Ministry of Ecology and Environment of the People’s Republic of China, 2021.
2 Rezaei F, Rownaghi A A, Monjezi S, et al. SO x /NO x removal from flue gas streams by solid adsorbents: a review of current challenges and future directions[J]. Energy & Fuels, 2015, 29(9): 5467-5486.
3 Illán-Gómez M J, Linares-Solano A, Radovic L R, et al. NO reduction by activated carbons (7): Some mechanistic aspects of uncatalyzed and catalyzed reaction[J]. Energy & Fuels, 1996, 10(1): 158-168.
4 Gupta H, Fan L S. Reduction of nitric oxide from combustion flue gas by bituminous coal char in the presence of oxygen[J]. Industrial & Engineering Chemistry Research, 2003, 42(12): 2536-2543.
5 Yan W X, Li S G, Fan C G, et al. Effect of surface carbon-oxygen complexes during NO reduction by coal char[J]. Fuel, 2017, 204: 40-46.
6 DeGroot W F, Richards G N. Gasification of cellulosic chars in oxygen and in nitrogen oxides[J]. Carbon, 1991, 29(2): 179-183.
7 Pevida C, Arenillas A, Rubiera F, et al. Heterogeneous reduction of nitric oxide on synthetic coal chars[J]. Fuel, 2005, 84(17): 2275-2279.
8 赵宗彬, 李文, 李保庆. 半焦制备条件对其还原NO反应性的影响[J]. 煤炭学报, 2002, 27(2): 179-183.
Zhao Z B, Li W, Li B Q. Effect of preparation conditions on gasification reactivity of char with NO[J]. Journal of China Coal Society, 2002, 27(2): 179-183.
9 Cetin E, Moghtaderi B, Gupta R, et al. Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars[J]. Fuel, 2004, 83(16): 2139-2150.
10 Suzuki T, Kyotani T, Tomita A. Study on the carbon-nitric oxide reaction in the presence of oxygen[J]. Industrial & Engineering Chemistry Research, 1994, 33(11): 2840-2845.
11 Aarna I, Suuberg E M. The role of carbon monoxide in the NO-Carbon reaction[J]. Energy & Fuels, 1999, 13(6): 1145-1153.
12 Tsubouchi N, Ohtsuka Y. Nitrogen release during high temperature pyrolysis of coals and catalytic role of calcium in N2 formation[J]. Fuel, 2002, 81(18): 2335-2342.
13 García-García A, Chinchón-Yepes S, Linares-Solano A, et al. NO reduction by potassium-containing coal briquettes. Effect of mineral matter content and coal rank[J]. Energy & Fuels, 1997, 11(2): 292-298.
14 Zhao Z B, Qiu J S, Li W, et al. Influence of mineral matter in coal on decomposition of NO over coal chars and emission of NO during char combustion[J]. Fuel, 2003, 82(8): 949-957.
15 Yamashita H, Tomita A, Yamada H, et al. Influence of char surface chemistry on the reduction of nitric oxide with chars[J]. Energy & Fuels, 1993, 7(1): 85-89.
16 Yang J, Mestl G, Herein D, et al. Reaction of NO with carbonaceous materials (1): Reaction and adsorption of NO on ashless carbon black[J]. Carbon, 2000, 38(5): 715-727.
17 Yang J, Mestl G, Herein D, et al. Reaction of NO with carbonaceous materials (2): Effect of oxygen on the reaction of NO with ashless carbon black[J]. Carbon, 2000, 38(5): 729-740.
18 闫文霞. 半焦直接还原氮氧化物机理与实验研究[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2017.
Yan W X. Mechanism study of NO x reduction by char in flue gas[D]. Beijing: University of Chinese Academy of Sciences(Institute of Process Engineering), 2017.
19 Zhu X L, Sheng C D. Evolution of the char structure of lignite under heat treatment and its influences on combustion reactivity[J]. Energy & Fuels, 2010, 24(1): 152-159.
20 Wang B, Sun L S, Su S, et al. Char structural evolution during pyrolysis and its influence on combustion reactivity in air and oxy-fuel conditions[J]. Energy & Fuels, 2012, 26(3): 1565-1574.
21 Tay H L, Li C Z. Changes in char reactivity and structure during the gasification of a Victorian brown coal: comparison between gasification in O2 and CO2 [J]. Fuel Processing Technology, 2010, 91(8): 800-804.
22 Bueno-López A, Caballero-Suárez J A, García-García A. Kinetic model for the NO x reduction process by potassium containing coal char pellets at moderate temperature (350—450℃) in the presence of O2 and H2O[J]. Fuel Processing Technology, 2006, 87(5): 429-436.
23 Xiao Y, Guo T, Shu C M, et al. Effects of oxygen concentrations on the coal oxidation characteristics and functional groups[J]. Journal of Thermal Analysis and Calorimetry, 2020, 142(2): 899-912.
24 Wang Z Z, Sun R, Ismail T M, et al. Characterization of coal char surface behavior after a heterogeneous oxidative treatment[J]. Fuel, 2017, 210: 154-164.
25 He X Q, Liu X F, Nie B S, et al. FTIR and Raman spectroscopy characterization of functional groups in various rank coals[J]. Fuel, 2017, 206: 555-563.
26 Chen Y Y, Mastalerz M, Schimmelmann A. Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy[J]. International Journal of Coal Geology, 2012, 104: 22-33.
27 Wu X Y, Song Q, Zhao H B, et al. Catalytic mechanism of inherent potassium on the char-NO reaction[J]. Energy & Fuels, 2015, 29(11): 7566-7571.
28 Yang N, Yu J L, Dou J X, et al. The effects of oxygen and metal oxide catalysts on the reduction reaction of NO with lignite char during combustion flue gas cleaning[J]. Fuel Processing Technology, 2016, 152: 102-107.
29 Shu Y, Zhang F, Wang F, et al. Catalytic reduction of NO x by biomass-derived activated carbon supported metals[J]. Chinese Journal of Chemical Engineering, 2018, 26(10): 2077-2083.
30 范垂钢, 李松庚. 半焦脱硝体系中重要碳氧中间体结构及其作用[J]. 华电技术, 2020, 42(10): 28-35.
Fan C G, Li S G. Structure and function of important C/O intermediates in semi-coke DeNO x systems[J]. Huadian Technology, 2020, 42(10): 28-35.
31 Zhao Z B, Li W, Li B Q. Catalytic reduction of NO by coal chars loaded with Ca and Fe in various atmospheres[J]. Fuel, 2002, 81(11): 1559-1564.
32 Bueno-López A, García-García A, Caballero-Suárez J A. Development of a kinetic model for the NO x reduction process by potassium-containing coal pellets[J]. Environmental Science & Technology, 2002, 36(24): 5447-5454.
[1] 陈昇, 王梦钶, 鲁波娜, 李秀峰, 刘岑凡, 刘梦溪, 范怡平, 卢春喜. 原料油汽化特性对催化裂化反应结焦过程影响的CFD模拟[J]. 化工学报, 2022, 73(7): 2982-2995.
[2] 欧阳萍, 张睿, 周剑, 刘海燕, 刘植昌, 徐春明, 孟祥海. 铜铝双金属复合离子液体的电化学行为及电沉积铜机理[J]. 化工学报, 2022, 73(7): 3212-3221.
[3] 苏晓辉, 张弛, 徐志锋, 金辉, 王治国. 黏弹性表面活性剂溶液中颗粒沉降特性研究[J]. 化工学报, 2022, 73(5): 1974-1985.
[4] 郭志强, 燕可洲, 张吉元, 柳丹丹, 高阳艳, 郭彦霞. 煤矸石/粉煤灰对赤泥钠化还原焙烧反应的影响机制[J]. 化工学报, 2022, 73(5): 2194-2205.
[5] 戚子豪, 钟文琪, 陈曦, 周冠文, 赵小亮, 辛美静, 陈翼, 朱永长. 基于混合建模的水泥生料分解过程动态特性研究[J]. 化工学报, 2022, 73(5): 2039-2051.
[6] 常楚鑫, 徐黎婷, 殷嘉伦, 雒先, 贾洪伟. 浸没状态下的低压电润湿行为研究[J]. 化工学报, 2022, 73(4): 1673-1682.
[7] 王学良, 刘美红, 熊忠汾, 李鑫. 考虑表面粗糙度的柔性箔柱面气膜密封紊流特性分析[J]. 化工学报, 2022, 73(4): 1683-1694.
[8] 王刚, 车小平, 汪仕勇, 邱介山. 水溶性带电聚合物黏结剂修饰炭电极用于增强电容去离子性能[J]. 化工学报, 2022, 73(4): 1763-1771.
[9] 张逸伟, 唐海荣, 何勇, 朱燕群, 王智化. 臭氧低温氧化烟气脱硝过程中的氮平衡试验研究[J]. 化工学报, 2022, 73(4): 1732-1742.
[10] 杨振, 姚元鹏, 李昀, 吴慧英. 表面活性剂对水过冷池沸腾特性影响实验研究[J]. 化工学报, 2022, 73(3): 1093-1101.
[11] 徐一鸣, 袁华, 刘素丽, 李平, 严佩蓉, 赵曦, 卢俊华, 赵唯, 张学兰. 微通道反应器中工业混合直链烷基苯磺酸盐的连续合成工艺研究[J]. 化工学报, 2022, 73(3): 1184-1193.
[12] 张瑾渊, 徐娜, 贺文云, 吕耀东, 刘子璐, 张兴芳. 消防用PEO/OTAC/NaSal减阻体系的介观分子动力学分析[J]. 化工学报, 2022, 73(3): 1157-1165.
[13] 王淋, 付乾, 肖帅, 李卓, 李俊, 张亮, 朱恂, 廖强. 高效可见光响应微生物/光电化学耦合人工光合作用系统[J]. 化工学报, 2022, 73(2): 887-893.
[14] 周楠, 王簪, 邵应娟, 钟文琪. 煤沥青球气固流化磨损特性实验研究[J]. 化工学报, 2022, 73(2): 587-594.
[15] 贾海林, 陈南, 焦振营, 程龙, 赵万里, 潘荣锟. 碳氢/有机硅/低碳醇三元系泡沫及抑制煤自燃的效果分析[J]. 化工学报, 2022, 73(1): 470-479.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!