化工学报 ›› 2016, Vol. 67 ›› Issue (S2): 32-37.doi: 10.11949/j.issn.0438-1157.20161362

• 流体力学与传递现象 • 上一篇    下一篇

MnCl2/CaCl2-NH3再吸附系统的制冷性能

朱芳啟, 江龙, 王丽伟, 王如竹   

  1. 上海交通大学制冷与低温工程研究所, 上海 200240
  • 收稿日期:2016-09-28 修回日期:2016-10-09 出版日期:2016-12-30 发布日期:2016-12-30
  • 通讯作者: 王丽伟 E-mail:Lwwang@sjtu.edu.cn
  • 基金资助:

    国家自然科学基金项目(51606118)。

Performance of MnCl2/CaCl2-NH3 resorption refrigeration system

ZHU Fangqi, JIANG Long, WANG Liwei, WANG Ruzhu   

  1. Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2016-09-28 Revised:2016-10-09 Published:2016-12-30 Online:2016-12-30
  • Supported by:

    supported by the National Natural Science Foundation of China (51606118).

摘要:

利用膨胀硫化石墨为基质研制了固化混合吸附剂,并搭建了低品位热能驱动的MnCl2/CaCl2-NH3为工质对的再吸附制冷系统。对该系统进行实验研究,结果表明:160℃热源温度为制冷性能系数(COP)的拐点温度,最大制冷功率为2.98 kW。当热源温度高于160℃时,系统显热负荷增大,继续加热高温床会降低制冷效率。当制冷温度为15℃时,系统COP为0.284~0.396;单位质量吸附剂的制冷功率(SCP)为100.3~338.8 W·kg-1。SCP随热源温度的升高而逐渐升高。

关键词: 再吸附, 复合吸附剂, 制冷功率, 制冷性能系数

Abstract:

The solid composite sorbents based on the matrix of expanded natural graphite treated with sulfuric acid are developed, and a MnCl2/CaCl2-NH3 resorption refrigeration system driven by low-grade thermal energy is established and experimentally investigated.Results indicate that 160℃ heat source temperature is the inflection temperature of coefficient of performance for refrigeration (COP), and a maximum cooling power of 2.98 kW is achieved.When the heating temperature is higher than 160℃, sensible heat load of the system increases which means keeping heating high temperature salt (HTS) sorption bed will reduce the overall refrigeration efficiency.For refrigeration temperature of 15℃, COP of the system ranges from 0.284 to 0.396 while specific cooling power (SCP) ranges from 100.3 to 338.8 W·kg-1.SCP increases with the increment of heat source temperature.

Key words: resorption, composite adsorbent, refrigeration power, coefficient of performance for refrigeration

中图分类号: 

  • TK172
[1] 李海燕, 刘静.低品位余热利用技术的研究现状、困境和新策略[J].科技导报,2010, 28(17): 112-117. LI H Y, LIU J.Research status, dilemma and new policy of low-grade waste heat utilization technology[J].Science & Technology Review, 2010, 28(17): 112-117.
[2] MEUNIER F.Solid sorption-an alternative to CFCs[J]. Heat Recovery System & CHP, 1993, 13:289-295.
[3] WANG R, OLIVEIRA R.Adsorption refrigeration-an efficient way to make good use of waste heat and solar energy[J].Progress in Energy and Combustion Science, 2006, 32(4): 424-458.
[4] XIA Z, WANG D, ZHANG J.Experimental study on improved two-bed silica gel-water adsorption chiller[J]. Energy Conversion and Management, 2008, 49(6): 1469-1479.
[5] GONG L X, WANG R Z, XIA Z Z, et al.Design and performance prediction of a new generation adsorption chiller using composite adsorbent[J].Energy Conversion and Management, 2011, 52(6): 2345-2350.
[6] BAO H S, WANG R Z, WANG L W.A resorption refrigerator driven by low grade thermal energy[J].Energy Conversion and Management, 2011, 52(6): 2339-2344.
[7] BAO H S, OLIVEIRA R G, WANG R Z, et al.Working pairs for resorption refrigerator[J].Applied Thermal Engineering, 2011, 31(14/15): 3015-3021.
[8] MEUNIER F.Solid sorption heat powered cycles for cooling and heat pumping applications[J].Applied Thermal Engineering, 1998, 18: 715-729.
[9] WANG L W, WU J Y, WANG R Z, et al.Experimental study of a solidified activited carbon-methanol adsorption ice maker[J].Applied Thermal Engineering, 2003, 23(12): 1453-1462.
[10] WANG S G, WANG R Z, WU J Y, et al.Experimental results and analysis for adsorption ice-making system with consolidated adsorbent[J].Adsorption-Journal of the International Adsorption Society, 2003, 9: 349-358.
[11] GOETZ V, SPINNER B.A solid-gas thermochemical cooling system using BaCl2 and NiCl2[J].Energy, 1997, 22: 49-58.
[12] SPINNER B.Ammonia-based thermochemical transformers[J].Heat Recovery System&CHP, 1993, 13: 301-307.
[13] VASILIEV L L, MISHKINIS D A, ANTUKH A A, et al. Resorption heat pump[J].Applied Thermal Engineering, 2004, 24(13): 1893-1903.
[14] WANG L W, BAO H S, WANG R Z.A comparison of the performances of adsorption and resorption refrigeration systems powered by the low grade heat[J].Renewable Energy, 2009, 34: 2373-2379.
[15] PAL M V D, BOER B D, VELDHUIS J, et al.Thermally driven ammonia-salt type Ⅱheat pump: development and test of a prototype[C].Berlin, Germany.
[16] LI T X, WANG R Z, OLIVEIRA G R, et al.Performance analysis of an innovative multimode, multisalt and multieffect chemisorption refrigeration system[J].AIChE Journal, 2007, 53: 3222-3230.
[17] XU J, OLIVEIRA R G, WANG R Z.Resorption system with simultaneous heat and cold production[J]. International Journal of Refrigeration, 2011, 34(5): 1262-1267.
[18] LIPINASSE E, MARION M, GOETZ V.Cooling storage with a resorption process.Application to a box temperature control[J].Applied Thermal Engineering, 2001, 21(12): 1251-1263.
[19] JIANG L, WANG L W, WANG R Z.Investigation on thermal conductive consolidated composite CaCl2 for adsorption refrigeration[J].International Journal of Thermal Sciences, 2014, 81: 68-75.
[20] WANG L W, METCALF S J, CRITOPH R E, et al. Development of thermal conductive consolidated activated carbon for adsorption refrigeration[J].Carbon, 2012, 50: 977-986.
[1] 邓超和, 王佳韵, 李金凤, 刘业凤, 王如竹. 可低温驱动的凝胶复合吸附剂的制备及吸/脱附性能研究[J]. 化工学报, 2021, 72(8): 4401-4409.
[2] 李威, 王秋旺, 曾敏. 水合盐基中低温热化学储热材料性能测试及数值研究[J]. 化工学报, 2021, 72(5): 2763-2772.
[3] 田军鹏, 沈圆辉, 张东辉, 唐忠利. 规整复合吸附剂真空变压吸附分离CH4/N2工艺模拟与分析[J]. 化工学报, 2021, 72(11): 5675-5685.
[4] 赵惠忠, 雷敏, 黄天厚, 刘涛, 张敏. 复合吸附剂MWCNT/MgCl2的水蒸气吸附性能[J]. 化工学报, 2020, 71(S1): 272-281.
[5] 赵惠忠, 程俊峰, 唐祥虎, 张少波. 多壁碳纳米管嵌入13X/MgCl2复合吸附剂的性能实验[J]. 化工学报, 2017, 68(5): 1860-1865.
[6] 高娇, 王丽伟, 周志松, 王如竹. 多盐复合吸附剂的非平衡吸附/解吸特性[J]. 化工学报, 2016, 67(S2): 184-190.
[7] 闫霆, 王如竹, 李廷贤. 热化学复合吸附储热循环的理论及实验[J]. 化工学报, 2016, 67(S2): 311-317.
[8] 赖艳华, 吴涛, 赵琳妍, 董震, 郝宗华, 陈常念, 吕明新. 低温吸湿复合吸附剂的制备及吸湿性能[J]. 化工学报, 2015, 66(S1): 154-158.
[9] 王令宝1,张 刚2,卜宪标1,李华山1,3. 制冷用木屑基质复合吸附剂的制备及性能测试[J]. 化工进展, 2013, 32(06): 1357-1362.
[10] 龚丽霞,王如竹,陈传涓. 复合吸附剂的基质选择与动态吸附性能测试 [J]. CIESC Journal, 2010, 61(S2): 25-29.
[11] 李程, 王如竹, 王丽伟, 李廷贤, 陈宇. 不同驱动温度下间歇性太阳能吸附制冰机的实验研究 [J]. 化工学报, 2010, 61(S2): 112-115.
[12] 陈恒, 李廷贤, 王丽伟, 吴静怡, 王如竹, Oliveira R G. 太阳能吸附式空调固化复合吸附剂性能 [J]. 化工学报, 2009, 60(5): 1097-1103.
[13] 李廷贤;王如竹;陈恒;王丽伟;吴静怡.

采用固化复合吸附剂的热化学吸附式低温冷冻系统的性能

[J]. CIESC Journal, 2008, 59(S2): 192-198.
[14] 陈砺, 王丽, 王红林, 董鹏飞. 化学吸附制冷用氯化锶复合吸附剂的制冷性能 [J]. 化工学报, 2008, 59(4): 836-842.
[15] 赵惠忠;张敏;刘震炎;马晓东;张波. 基于13X沸石的新型制冷复合吸附剂性能 [J]. CIESC Journal, 2007, 58(5): 1150-1154.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!