化工学报 ›› 2017, Vol. 68 ›› Issue (8): 3177-3182.DOI: 10.11949/j.issn.0438-1157.20170281
蓝艇, 童楚东, 史旭华
收稿日期:
2017-03-22
修回日期:
2017-04-11
出版日期:
2017-08-05
发布日期:
2017-08-05
通讯作者:
蓝艇
基金资助:
国家自然科学基金项目(61503204);浙江省自然科学基金项目(Y16F030001);宁波市自然科学基金项目(2016A610092)。
LAN Ting, TONG Chudong, SHI Xuhua
Received:
2017-03-22
Revised:
2017-04-11
Online:
2017-08-05
Published:
2017-08-05
Supported by:
supported by the National Natural Science Foundation of China (61503204), the Natural Science Foundation of Zhejiang Province(Y16F030001) and the Natural Science Foundation of Ningbo (2016A610092).
摘要:
传统主成分分析(PCA)算法旨在挖掘训练数据各变量间的相关性特征,已在数据驱动的故障检测领域得到了广泛的研究与应用。然而,传统PCA方法在建模过程中通常认为各个测量变量的重要性是一致的,因此不能有效而全面地描述出变量间相关性的差异。为此,提出一种变量加权型PCA(VWPCA)算法并将之应用于故障检测。首先,通过对训练数据进行加权处理,使处理后的数据能够充分体现出变量间相关性的差异。然后,在此基础上建立分布式的PCA故障检测模型。在线实施故障检测时,则通过贝叶斯准则将多组监测结果融合为一组概率指标。VWPCA方法通过相关性大小为各变量赋予不同的权值,从而将相关性差异考虑进了PCA的建模过程中,相应模型对训练数据特征的描述也就更全面。最后,通过在TE过程上的测试验证VWPCA方法用于故障检测的优越性。
中图分类号:
蓝艇, 童楚东, 史旭华. 变量加权型主元分析算法及其在故障检测中的应用[J]. 化工学报, 2017, 68(8): 3177-3182.
LAN Ting, TONG Chudong, SHI Xuhua. Variable weighted principal component analysis algorithm and its application in fault detection[J]. CIESC Journal, 2017, 68(8): 3177-3182.
[1] | GE Z, SONG Z, GAO F. Review of recent research on data-based process monitoring[J]. Ind. Eng. Chem. Res., 2013, 52(10):3543-3562. |
[2] | YIN S, DING S X, XIE X, et al. A review on basic data-driven approaches for industrial process monitoring[J]. IEEE Trans. Ind. Electron., 2014, 61(11):6418-6428. |
[3] | 周乐, 宋执环, 侯北平, 等. 一种鲁棒半监督建模方法及其在化工过程故障检测中的应用[J]. 化工学报, 2017, 68(3):1109-1115. ZHOU L, SONG Z H, HOU B P, et al. Robust semi-supervised modelling method and its application to fault detection in chemical processes[J]. CIESC Journal, 2017, 68(3):1109-1115. |
[4] | 王磊, 邓晓刚, 徐莹, 等. 基于变量子域PCA的故障检测方法[J]. 化工学报, 2016, 67(10):4300-4308. WANG L, DENG X G, XU Y, et al. Fault detection method based on variable sub-region PCA[J]. CIESC Journal, 2016, 67(10):4300-4308. |
[5] | 童楚东, 史旭华. 基于互信息的PCA方法及其在过程监测中的应用[J]. 化工学报, 2015, 66(10):4101-4106. TONG C D, SHI X H. Mutual information based PCA algorithm with application in process monitoring[J]. CIESC Journal, 2015, 66(10):4101-4106. |
[6] | 江伟, 王振雷, 王昕. 基于混合分块DMICA-PCA的全流程过程监控方法[J]. 化工学报, 2017, 68(2):759-766. JIANG W, WANG Z L, WANG X. Plant-wide process monitoring based on mixed multiblock DMICA-PCA[J]. CIESC Journal, 2017, 68(2):759-766. |
[7] | TONG C, LAN T, SHI X. Double-layer ensemble monitoring of non-Gaussian processes using modified independent component analysis[J]. ISA Trans., 2017, 68:181-188. |
[8] | 胡永兵, 高学金, 李亚芬, 等. 基于仿射传播聚类子集主元分析的间歇过程监测方法[J]. 化工学报, 2016,67(5):1989-1997. HU Y B, GAO X J, LI Y F, et al. Subset multiway principal component analysis monitoring for batch process based on affinity propagation clustering[J]. CIESC Journal, 2016,67(5):1989-1997. |
[9] | RATO T J, REIS M S. Fault detection in the Tennessee Eastman benchmark process using dynamic principal components analysis based on decorrelated residuals (DPCA-DR)[J]. Chemom. Intell. Lab. Syst., 2013, 125(7):101-108. |
[10] | 韩敏,张占奎. 基于改进核主成分分析的故障检测与诊断方法[J]. 化工学报, 2015, 66(6):2139-2149. HAN M, ZHANG Z K. Fault detection and diagnosis method based on modified kernel principal component analysis[J]. CIESC Journal, 2015, 66(6):2139-2149. |
[11] | 童楚东, 蓝艇, 史旭华. 基于互信息的分散式动态PCA故障检测方法[J]. 化工学报, 2016, 67(10):4317-4323. TONG C D, LAN T, SHI X H. Fault detection by decentralized dynamic PCA algorithm on mutual information[J]. CIESC Journal, 2016, 67(10):4317-4323. |
[12] | LIU Y, ZHANG G, XU B. Compressive sparse principal component analysis for process supervisory monitoring and fault detection[J]. J. Process Control, 2017, 50:1-10. |
[13] | GE Z, SONG Z. Distributed PCA model for plant-wide process monitoring[J]. Ind. Eng. Chem. Res., 2013, 52(5):1947-1957. |
[14] | TONG C, LAN T, SHI X. Fault detection and diagnosis of dynamic processes using weighted dynamic decentralized PCA approach[J]. Chemom. Intell. Lab. Syst., 2017, 161:34-42. |
[15] | TONG C, SONG Y, YAN X. Distributed statistical process monitoring based on four-subspace construction and Bayesian inference[J]. Ind. Eng. Chem. Res., 2013, 52(29):9897-9907. |
[16] | JIANG Q, WANG B, YAN X. Multiblock independent component analysis integrated with Hellinger distance and Bayesian inference for non-Gaussian plant-wide process monitoring[J]. Ind. Eng. Chem. Res., 2015, 54(9):2497-2508. |
[17] | DOWNS J J, VOGEK E F. A plant-wide industrial process control problem[J]. Comput. Chem. Eng., 1993, 17(3):245-255. |
[18] | YIN S, DING S X, HAGHANI A, et al. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process[J]. J. Process Control, 2012, 22:1567-1581. |
[19] | QIN S J. Statistical process monitoring:basics and beyond[J]. J. Chemom., 2003, 17(7/8):480-502. |
[20] | GE Z, ZHANG M, SONG Z. Nonlinear process monitoring based on linear subspace and Bayesian inference[J]. J. Process Control, 2010, 20(5):676-688. |
[21] | GE Z, SONG Z. Multimode process monitoring based on Bayesian method[J]. J. Chemom., 2009, 23(12):636-650. |
[22] | LI N, YANG Y. Ensemble kernel principal component analysis for improved nonlinear process monitoring[J]. Ind. Eng. Chem. Res., 2015, 54(1):318-329. |
[23] | GE Z, SONG Z. Bayesian inference and joint probability analysis for batch process monitoring[J]. AIChE J., 2013, 59(10):3702-3713. |
[24] | HUANG J, YAN X. Dynamic process fault detection and diagnosis based on dynamic principal component analysis, dynamic independent component analysis and Bayesian inference[J]. Chemom. Intell. Lab. Syst., 2015, 148:115-127. |
[25] | 杨健, 宋冰, 谭帅, 等. 时序约束NPE算法在化工过程故障检测中的应用[J]. 化工学报, 2016, 67(12):5131-5139. YANG J, SONG B, TAN S, et al. Time constrained NPE for fault detection in chemical processes[J]. CIESC Journal, 2016, 67(12):5131-5139. |
[26] | SEVERSON K, CHAIWATANODOM P, BRAATZ R D. Perspectives on process monitoring of industrial systems[J]. Annu. Rev. Control, 2016, 42:190-200. |
[27] | ZHANG H, QI Y, WANG L, et al. Fault detection and diagnosis of chemical process using enhanced KECA[J]. Chemom. Intell. Lab. Syst., 2017, 161:61-69. |
[28] | BERNAL-DE-LAZARO J M, LLANES-SANTIAGO O, PRIETO-MORENO A, et al. Enhanced dynamic approach to improve the detection of small-magnitude faults[J]. Chem. Eng. Sci., 2016, 14:166-179. |
[29] | 薄翠梅, 韩晓春, 易辉. 基于聚类选择k近邻的LLE算法及故障检测[J]. 化工学报, 2016, 67(3):925-930. BO C M, HAN X C, YI H, et al. Neighborhood selection of LLE based on cluster for fault detection[J]. CIESC Journal, 2016, 67(3):925-930.et al. Subset multiway principal component analysis monitoring for batch process based on affinity propagation clustering[J]. CIESC Journal, 2016; 67(5):1989-1997. |
[9] | RATO T J, REIS M S. Fault detection in the Tennessee Eastman benchmark process using dynamic principal components analysis based on decorrelated residuals (DPCA-DR)[J]. Chemom. Intell. Lab. Syst., 2013, 125(7):101-108. |
[10] | Han Min, Zhang Zhankui. Fault detection and diagnosis method based on modified kernel principal component analysis[J]. Journal of Chemical Industry and Engineering (China) (化工学报), 2015; 66(6):2139-2149. |
[11] | 童楚东, 蓝艇, 史旭华. 基于互信息的分散式动态PCA故障检测方法[J]. 化工学报, 2016, 67(10):4317-4323. TONG C, LAN T, SHI X. Fault detection by decentralized dynamic PCA algorithm on mutual information[J]. CIESC Journal, 2016, 67(10):4317-4323. |
[12] | LIU Y, ZHANG G, XU B. Compressive sparse principal component analysis for process supervisory monitoring and fault detection. J. Process Control, 2017, 50:1-10. |
[13] | GE Z, SONG Z. Distributed PCA model for plant-wide process monitoring[J]. Ind. Eng. Chem. Res., 2013, 52(5):1947-1957. |
[14] | TONG C, LAN T, SHI X. Fault detection and diagnosis of dynamic processes using weighted dynamic decentralized PCA approach[J]. Chemom. Intell. Lab. Syst., 2017, 161:34-42. |
[15] | TONG C, SONG Y, YAN X. Distributed Statistical Process Monitoring Based on Four-Subspace Construction and Bayesian Inference[J]. Ind. Eng. Chem. Res., 2013, 52(29):9897-9907. |
[16] | JIANG Q, WWANG B, YAN X. Multiblock independent component analysis integrated with Hellinger distance and Bayesian inference for non-Gaussian plant-wide process monitoring[J]. Ind. Eng. Chem. Res., 2015, 54(9):2497-2508. |
[17] | DOWNS J J, VOGEK E F. A plant-wide industrial process control problem[J]. Comput. Chem. Eng. 1993, 17(3):245-255. |
[18] | YIN S, DING S X, HAGHANI A, HAO H, ZHANG P. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process. J. Process Control, 2012, 22:1567-1581. |
[19] | RATO T J, REIS M. Fault detection in the Tennessee Eastman benchmark process using dynamic principal components analysis based on decorrelated residuals (DPCA-DR). Chemom. Intell. Lab. Syst., 2013, 125:101-108. |
[20] | QIN S J. Statistical process monitoring:basics and beyond[J]. J. Chemom., 2003, 17(7-8):480-502. |
[21] | GE Z, ZHANG M, SONG Z. Nonlinear process monitoring based on linear subspace and Bayesian inference[J]. J.Process Control, 2010, 20(5):676-688. |
[22] | GE Z, SONG Z. Multimode process monitoring based on Bayesian method[J]. J. Chemom., 2009, 23(12):636-650. |
[23] | LI N, YANG Y. Ensemble kernel principal component analysis for improved nonlinear process monitoring[J]. Ind. Eng. Chem. Res., 2015, 54(1):318-329. |
[24] | GE Z, SONG Z. Bayesian inference and joint probability analysis for batch process monitoring[J]. AIChE J., 2013, 59(10):3702-3713. |
[25] | HUANG J, YAN X. Dynamic process fault detection and diagnosis based on dynamic principal component analysis, dynamic independent component analysis and Bayesian inference[J]. Chemom. Intell. Lab. Syst., 2015, 148:115-127. |
[26] | 杨健, 宋冰, 谭帅, 等. 时序约束NPE算法在化工过程故障检测中的应用[J]. 化工学报, 2016, 67(12):5131-5139. YANG J, SONG B, TAN S, et al. Time constrained NPE for fault detection in chemical processes[J]. CIESC Journal, 2016, 67(12):5131-5139. |
[27] | SEVERSON K, CHAIWATANODOM P, BRAATZ R D. Perspectives on process monitoring of industrial systems[J]. Annu. Rev. Control, 2016, 42:190-200. |
[28] | ZHANG H, Qi Y, WANG L, GAO X, WANG X. Fault detection and diagnosis of chemical process using enhanced KECA[J]. Chemom. Intell. Lab. Syst., 2017, 161:61-69. |
[29] | BERNAL-DE-LAZARO J M, LLANES-SANTIAGO O, PRIETO-MORENO A, et al. Enhanced dynamic approach to improve the detection of small-magnitude faults[J]. Chem. Eng. Sci., 2016, 14:166-179. |
[30] | 薄翠梅, 韩晓春, 易辉. 基于聚类选择k近邻的LLE算法及故障检测[J]. 化工学报), 2016, 67(3):925-930. BO C, HAN X, YI H, et al. Neighborhood selection of LLE based on cluster for fault detection[J]. CIESC Journal, 2016, 67(3):925-930. |
[1] | 张逸豪, 王振雷. 基于最大信息系数的分组支持向量数据描述故障检测[J]. 化工学报, 2023, 74(9): 3865-3878. |
[2] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[3] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[4] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[5] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[6] | 李贵贤, 曹阿波, 孟文亮, 王东亮, 杨勇, 周怀荣. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009. |
[7] | 王光, 单发顺, 钱禹丞, 焦建芳. 基于集成学习传递熵的化工过程微小故障检测方法[J]. 化工学报, 2023, 74(7): 2967-2978. |
[8] | 邵远哲, 赵忠盖, 刘飞. 基于共同趋势模型的非平稳过程质量相关故障检测方法[J]. 化工学报, 2023, 74(6): 2522-2537. |
[9] | 苏晓丹, 朱干宇, 李会泉, 郑光明, 孟子衡, 李防, 杨云瑞, 习本军, 崔玉. 湿法磷酸半水工艺考察与石膏结晶过程研究[J]. 化工学报, 2023, 74(4): 1805-1817. |
[10] | 贠程, 王倩琳, 陈锋, 张鑫, 窦站, 颜廷俊. 基于社团结构的化工过程风险演化路径深度挖掘[J]. 化工学报, 2023, 74(4): 1639-1650. |
[11] | 宋冰, 郑城风, 侍洪波, 陶阳, 谭帅. 基于VAE-OCCA的质量相关故障检测方法研究[J]. 化工学报, 2023, 74(4): 1630-1638. |
[12] | 张中秋, 李宏光, 石逸林. 基于人工预测调控策略的复杂化工过程多任务学习方法[J]. 化工学报, 2023, 74(3): 1195-1204. |
[13] | 张江淮, 赵众. 碳三加氢装置鲁棒最小协方差约束控制及应用[J]. 化工学报, 2023, 74(3): 1216-1227. |
[14] | 王子宗, 索寒生, 赵学良. 数字孪生智能乙烯工厂研究与构建[J]. 化工学报, 2023, 74(3): 1175-1186. |
[15] | 杨明辉, 刘晓月, 邓晓刚, 廖明燕, 侯春望. 基于加权概率CVDA的动态化工系统微小故障检测[J]. 化工学报, 2022, 73(9): 3963-3972. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 836
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 374
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||