[1] |
GE Z, SONG Z, GAO F. Review of recent research on data-based process monitoring[J]. Ind. Eng. Chem. Res., 2013, 52(10):3543-3562.
|
[2] |
YIN S, DING S X, XIE X, et al. A review on basic data-driven approaches for industrial process monitoring[J]. IEEE Trans. Ind. Electron., 2014, 61(11):6418-6428.
|
[3] |
周乐, 宋执环, 侯北平, 等. 一种鲁棒半监督建模方法及其在化工过程故障检测中的应用[J]. 化工学报, 2017, 68(3):1109-1115. ZHOU L, SONG Z H, HOU B P, et al. Robust semi-supervised modelling method and its application to fault detection in chemical processes[J]. CIESC Journal, 2017, 68(3):1109-1115.
|
[4] |
王磊, 邓晓刚, 徐莹, 等. 基于变量子域PCA的故障检测方法[J]. 化工学报, 2016, 67(10):4300-4308. WANG L, DENG X G, XU Y, et al. Fault detection method based on variable sub-region PCA[J]. CIESC Journal, 2016, 67(10):4300-4308.
|
[5] |
童楚东, 史旭华. 基于互信息的PCA方法及其在过程监测中的应用[J]. 化工学报, 2015, 66(10):4101-4106. TONG C D, SHI X H. Mutual information based PCA algorithm with application in process monitoring[J]. CIESC Journal, 2015, 66(10):4101-4106.
|
[6] |
江伟, 王振雷, 王昕. 基于混合分块DMICA-PCA的全流程过程监控方法[J]. 化工学报, 2017, 68(2):759-766. JIANG W, WANG Z L, WANG X. Plant-wide process monitoring based on mixed multiblock DMICA-PCA[J]. CIESC Journal, 2017, 68(2):759-766.
|
[7] |
TONG C, LAN T, SHI X. Double-layer ensemble monitoring of non-Gaussian processes using modified independent component analysis[J]. ISA Trans., 2017, 68:181-188.
|
[8] |
胡永兵, 高学金, 李亚芬, 等. 基于仿射传播聚类子集主元分析的间歇过程监测方法[J]. 化工学报, 2016,67(5):1989-1997. HU Y B, GAO X J, LI Y F, et al. Subset multiway principal component analysis monitoring for batch process based on affinity propagation clustering[J]. CIESC Journal, 2016,67(5):1989-1997.
|
[9] |
RATO T J, REIS M S. Fault detection in the Tennessee Eastman benchmark process using dynamic principal components analysis based on decorrelated residuals (DPCA-DR)[J]. Chemom. Intell. Lab. Syst., 2013, 125(7):101-108.
|
[10] |
韩敏,张占奎. 基于改进核主成分分析的故障检测与诊断方法[J]. 化工学报, 2015, 66(6):2139-2149. HAN M, ZHANG Z K. Fault detection and diagnosis method based on modified kernel principal component analysis[J]. CIESC Journal, 2015, 66(6):2139-2149.
|
[11] |
童楚东, 蓝艇, 史旭华. 基于互信息的分散式动态PCA故障检测方法[J]. 化工学报, 2016, 67(10):4317-4323. TONG C D, LAN T, SHI X H. Fault detection by decentralized dynamic PCA algorithm on mutual information[J]. CIESC Journal, 2016, 67(10):4317-4323.
|
[12] |
LIU Y, ZHANG G, XU B. Compressive sparse principal component analysis for process supervisory monitoring and fault detection[J]. J. Process Control, 2017, 50:1-10.
|
[13] |
GE Z, SONG Z. Distributed PCA model for plant-wide process monitoring[J]. Ind. Eng. Chem. Res., 2013, 52(5):1947-1957.
|
[14] |
TONG C, LAN T, SHI X. Fault detection and diagnosis of dynamic processes using weighted dynamic decentralized PCA approach[J]. Chemom. Intell. Lab. Syst., 2017, 161:34-42.
|
[15] |
TONG C, SONG Y, YAN X. Distributed statistical process monitoring based on four-subspace construction and Bayesian inference[J]. Ind. Eng. Chem. Res., 2013, 52(29):9897-9907.
|
[16] |
JIANG Q, WANG B, YAN X. Multiblock independent component analysis integrated with Hellinger distance and Bayesian inference for non-Gaussian plant-wide process monitoring[J]. Ind. Eng. Chem. Res., 2015, 54(9):2497-2508.
|
[17] |
DOWNS J J, VOGEK E F. A plant-wide industrial process control problem[J]. Comput. Chem. Eng., 1993, 17(3):245-255.
|
[18] |
YIN S, DING S X, HAGHANI A, et al. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process[J]. J. Process Control, 2012, 22:1567-1581.
|
[19] |
QIN S J. Statistical process monitoring:basics and beyond[J]. J. Chemom., 2003, 17(7/8):480-502.
|
[20] |
GE Z, ZHANG M, SONG Z. Nonlinear process monitoring based on linear subspace and Bayesian inference[J]. J. Process Control, 2010, 20(5):676-688.
|
[21] |
GE Z, SONG Z. Multimode process monitoring based on Bayesian method[J]. J. Chemom., 2009, 23(12):636-650.
|
[22] |
LI N, YANG Y. Ensemble kernel principal component analysis for improved nonlinear process monitoring[J]. Ind. Eng. Chem. Res., 2015, 54(1):318-329.
|
[23] |
GE Z, SONG Z. Bayesian inference and joint probability analysis for batch process monitoring[J]. AIChE J., 2013, 59(10):3702-3713.
|
[24] |
HUANG J, YAN X. Dynamic process fault detection and diagnosis based on dynamic principal component analysis, dynamic independent component analysis and Bayesian inference[J]. Chemom. Intell. Lab. Syst., 2015, 148:115-127.
|
[25] |
杨健, 宋冰, 谭帅, 等. 时序约束NPE算法在化工过程故障检测中的应用[J]. 化工学报, 2016, 67(12):5131-5139. YANG J, SONG B, TAN S, et al. Time constrained NPE for fault detection in chemical processes[J]. CIESC Journal, 2016, 67(12):5131-5139.
|
[26] |
SEVERSON K, CHAIWATANODOM P, BRAATZ R D. Perspectives on process monitoring of industrial systems[J]. Annu. Rev. Control, 2016, 42:190-200.
|
[27] |
ZHANG H, QI Y, WANG L, et al. Fault detection and diagnosis of chemical process using enhanced KECA[J]. Chemom. Intell. Lab. Syst., 2017, 161:61-69.
|
[28] |
BERNAL-DE-LAZARO J M, LLANES-SANTIAGO O, PRIETO-MORENO A, et al. Enhanced dynamic approach to improve the detection of small-magnitude faults[J]. Chem. Eng. Sci., 2016, 14:166-179.
|
[29] |
薄翠梅, 韩晓春, 易辉. 基于聚类选择k近邻的LLE算法及故障检测[J]. 化工学报, 2016, 67(3):925-930. BO C M, HAN X C, YI H, et al. Neighborhood selection of LLE based on cluster for fault detection[J]. CIESC Journal, 2016, 67(3):925-930.et al. Subset multiway principal component analysis monitoring for batch process based on affinity propagation clustering[J]. CIESC Journal, 2016; 67(5):1989-1997.
|
[9] |
RATO T J, REIS M S. Fault detection in the Tennessee Eastman benchmark process using dynamic principal components analysis based on decorrelated residuals (DPCA-DR)[J]. Chemom. Intell. Lab. Syst., 2013, 125(7):101-108.
|
[10] |
Han Min, Zhang Zhankui. Fault detection and diagnosis method based on modified kernel principal component analysis[J]. Journal of Chemical Industry and Engineering (China) (化工学报), 2015; 66(6):2139-2149.
|
[11] |
童楚东, 蓝艇, 史旭华. 基于互信息的分散式动态PCA故障检测方法[J]. 化工学报, 2016, 67(10):4317-4323. TONG C, LAN T, SHI X. Fault detection by decentralized dynamic PCA algorithm on mutual information[J]. CIESC Journal, 2016, 67(10):4317-4323.
|
[12] |
LIU Y, ZHANG G, XU B. Compressive sparse principal component analysis for process supervisory monitoring and fault detection. J. Process Control, 2017, 50:1-10.
|
[13] |
GE Z, SONG Z. Distributed PCA model for plant-wide process monitoring[J]. Ind. Eng. Chem. Res., 2013, 52(5):1947-1957.
|
[14] |
TONG C, LAN T, SHI X. Fault detection and diagnosis of dynamic processes using weighted dynamic decentralized PCA approach[J]. Chemom. Intell. Lab. Syst., 2017, 161:34-42.
|
[15] |
TONG C, SONG Y, YAN X. Distributed Statistical Process Monitoring Based on Four-Subspace Construction and Bayesian Inference[J]. Ind. Eng. Chem. Res., 2013, 52(29):9897-9907.
|
[16] |
JIANG Q, WWANG B, YAN X. Multiblock independent component analysis integrated with Hellinger distance and Bayesian inference for non-Gaussian plant-wide process monitoring[J]. Ind. Eng. Chem. Res., 2015, 54(9):2497-2508.
|
[17] |
DOWNS J J, VOGEK E F. A plant-wide industrial process control problem[J]. Comput. Chem. Eng. 1993, 17(3):245-255.
|
[18] |
YIN S, DING S X, HAGHANI A, HAO H, ZHANG P. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process. J. Process Control, 2012, 22:1567-1581.
|
[19] |
RATO T J, REIS M. Fault detection in the Tennessee Eastman benchmark process using dynamic principal components analysis based on decorrelated residuals (DPCA-DR). Chemom. Intell. Lab. Syst., 2013, 125:101-108.
|
[20] |
QIN S J. Statistical process monitoring:basics and beyond[J]. J. Chemom., 2003, 17(7-8):480-502.
|
[21] |
GE Z, ZHANG M, SONG Z. Nonlinear process monitoring based on linear subspace and Bayesian inference[J]. J.Process Control, 2010, 20(5):676-688.
|
[22] |
GE Z, SONG Z. Multimode process monitoring based on Bayesian method[J]. J. Chemom., 2009, 23(12):636-650.
|
[23] |
LI N, YANG Y. Ensemble kernel principal component analysis for improved nonlinear process monitoring[J]. Ind. Eng. Chem. Res., 2015, 54(1):318-329.
|
[24] |
GE Z, SONG Z. Bayesian inference and joint probability analysis for batch process monitoring[J]. AIChE J., 2013, 59(10):3702-3713.
|
[25] |
HUANG J, YAN X. Dynamic process fault detection and diagnosis based on dynamic principal component analysis, dynamic independent component analysis and Bayesian inference[J]. Chemom. Intell. Lab. Syst., 2015, 148:115-127.
|
[26] |
杨健, 宋冰, 谭帅, 等. 时序约束NPE算法在化工过程故障检测中的应用[J]. 化工学报, 2016, 67(12):5131-5139. YANG J, SONG B, TAN S, et al. Time constrained NPE for fault detection in chemical processes[J]. CIESC Journal, 2016, 67(12):5131-5139.
|
[27] |
SEVERSON K, CHAIWATANODOM P, BRAATZ R D. Perspectives on process monitoring of industrial systems[J]. Annu. Rev. Control, 2016, 42:190-200.
|
[28] |
ZHANG H, Qi Y, WANG L, GAO X, WANG X. Fault detection and diagnosis of chemical process using enhanced KECA[J]. Chemom. Intell. Lab. Syst., 2017, 161:61-69.
|
[29] |
BERNAL-DE-LAZARO J M, LLANES-SANTIAGO O, PRIETO-MORENO A, et al. Enhanced dynamic approach to improve the detection of small-magnitude faults[J]. Chem. Eng. Sci., 2016, 14:166-179.
|
[30] |
薄翠梅, 韩晓春, 易辉. 基于聚类选择k近邻的LLE算法及故障检测[J]. 化工学报), 2016, 67(3):925-930. BO C, HAN X, YI H, et al. Neighborhood selection of LLE based on cluster for fault detection[J]. CIESC Journal, 2016, 67(3):925-930.
|