[1] |
SAMANTA A, ZHAO A, SHIMIZU G K H, et al. Post-combustion co2 capture using solid sorbents:a review[J]. Industrial & Engineering Chemistry Research, 2011, 51(4):1438-1463.
|
[2] |
靖宇, 韦力, 王运东, 等. 混合胺改性SBA-15的二氧化碳吸附特性[J]. 化工学报, 2014, 65(1):328-336. JING Y, WEI L, WANG Y D, et al. Mixed-amine functionalized SBA-15 for CO2 adsorption[J]. CIESC Journal, 2014, 65(1):328-336.
|
[3] |
靖宇, 韦力, 王运东. 吸附法捕集二氧化碳吸附剂的研究进展[J].化工进展, 2011, (S2):133-138. JING Y, WEI L, WANG Y D. The advances of adsorbents in the field of CO2 capture[J]. Chemical Industry and Engineering Progress, 2011, (S2):133-138.
|
[4] |
SUMIDA K, ROGOW D L, MASON J A, et al. Carbon dioxide capture in metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2):724-781.
|
[5] |
WANG J, YANG J, KRISHNA R, et al. A versatile synthesis of metal-organic framework-derived porous carbons for CO2 capture and gas separation[J]. Journal of Materials Chemistry A, 2016, 4(48):19095-19106.
|
[6] |
魏建文, 林志峰, 何泽瑜, 等. 蔗渣活性炭二次活化制备及其吸附CO2性能研究[J]. 无机材料学报, 2017, 32(1):18-24. WEI J W, LIN Z F, HE Z Y, et al. Bagasse activated carbon reactivation promotes adsorption of CO2[J]. Journal of Inorganic Materials, 2017, 32(1):18-24.
|
[7] |
HUANG H Y, YANG R T, CHINN D, et al. Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas[J]. Industrial & Engineering Chemistry Research, 2003, 42(12):2427-2433.
|
[8] |
XU X, SONG C, MILLER B G, et al. Influence of moisture on CO2 separation from gas mixture by a nanoporous adsorbent based on polyethylenimine-modified molecular sieve MCM-41[J]. Industrial & Engineering Chemistry Research, 2005, 44(21):8113-8119.
|
[9] |
XU X, SONG C, ANDRESEN J M, et al. Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture[J]. Energy & Fuels, 2002, 16(6):1463-1469.
|
[10] |
CHEN H, LIANG Z, YANG X, et al. Experimental investigation of CO2 capture capacity:exploring mesoporous silica SBA-15 material impregnated with monoethanolamine and diethanolamine[J]. Energy & Fuels, 2016, 30(11):9554-9562.
|
[11] |
LIU S H, LIN Y C, CHIEN Y C, et al. Adsorption of CO2 from flue gas streams by a highly efficient and stable aminosilica adsorbent[J]. Air & Waste, 2011, 61(2):226-233.
|
[12] |
KISHOR R, GHOSHAL A K. Amine modified mesoporous silica for CO2 adsorption:the role of structural parameters[J]. Industrial & Engineering Chemistry Research, 2017, 56(20):6078-6087.
|
[13] |
FAYAZ M, SAYARI A. Long-term effect of steam exposure on CO2 capture performance of amine-grafted silica[J]. ACS Applied Materials & Interfaces, 2017, 9(50):43747-43754.
|
[14] |
RAO N, WANG M, SHANG Z, et al. CO2 adsorption by amine-functionalized MCM-41:a comparison between impregnation and grafting modification methods[J]. Energy & Fuels, 2018, 32(1):670-677.
|
[15] |
BHAGIYALAKSHMI M, YUN L J, ANURADHA R, et al. Synthesis of chloropropylamine grafted mesoporous MCM-41, MCM-48 and SBA-15 from rice husk ash:their application to CO2 chemisorption[J]. Journal of Porous Materials, 2010, 17(4):475-484.
|
[16] |
RAJESH A K, STEVEN S C C, YEE S, et al. Thermal and chemical stability of regenerable solid amine sorbent for CO2 capture[J]. Energy & Fuels, 2006, 20(4):1514-1520.
|
[17] |
WANG L, YANG R T. Increasing selective CO2 adsorption on amine-grafted SBA-15 by increasing silanol density[J]. Journal of Physical Chemistry C, 2011, 115(43):21264-21272.
|
[18] |
LI Y, SUN N, LI L, et al. Grafting of amines on ethanol-extracted SBA-15 for CO2 adsorption[J]. Materials, 2013, 6(3):981-999.
|
[19] |
KLINTHONG W, CHAO K J, TAN C S. CO2 capture by as-synthesized amine-functionalized MCM-41 prepared through direct synthesis under basic condition[J]. Industrial & Engineering Chemistry Research, 2013, 52(29):9834-9842.
|
[20] |
CHOI S, GRAY M L, JONES C W. Amine-tethered solid adsorbents coupling high adsorption capacity and renderability for CO2 capture from ambient air[J]. ChemSusChem, 2011, 4(5):628-635.
|
[21] |
FUJIKI J, YAMADA H, YOGO K. Enhanced adsorption of carbon dioxide on surface-modified mesoporous silica-supported tetraethylenepentamine:role of surface chemical structure[J]. Microporous & Mesoporous Materials, 2015, 215(6):76-83.
|
[22] |
JUNG H, LEE C H, JEON S, et al. Effect of amine double-functionalization on CO2 adsorption behaviors of silica gel-supported adsorbents[J]. Adsorption, 2016, 22(8):1137-1146.
|
[23] |
SANZ R, CALLEJA G, ARENCIBIA A, et al. CO2 uptake and adsorption kinetics of pore-expanded SBA-15 double-functionalized with amino groups[J]. Energy & Fuels, 2013, 27(12):7637-7644.
|
[24] |
HU H, ZHANG T, YUAN S, et al. Functionalization of multi-walled carbon nanotubes with phenylenediamine for enhanced CO2 adsorption[J]. Adsorption, 2017, 23(1):73-85.
|
[25] |
丁志杰, 陈君华, 郭雨, 等. HNO3氧化脱除SBA-15中有机模板剂的研究[J]. 硅酸盐通报, 2009, 28(4):704-708. DING Z J, CHEN J H, GUO Y, et al. Study on removing organic template from SBA-15 by HNO3 oxidation treatment[J]. Bulletin of the Chinese Ceramic Society, 2009, 28(4):704-708.
|
[26] |
苏赵辉, 陈启元, 李洁, 等. W掺杂SiO2介孔材料的制备与表征[J]. 物理化学学报, 2007, 23(11):1760-1764. SU Z H, CHEN Q Y, LI J, et al. Preparation and characterization of mesoporous silicon dioxide doped with tungsten[J]. Acta Physico-Chimica Sinica, 2007, 23(11):1760-1764.
|
[27] |
KISHOR R, GHOSHAL A K. Polyethylenimine functionalized as-synthesized KIT-6 adsorbent for highly CO2/N2 selective separation[J]. Energy & Fuels, 2016, 30(11):9635-9644.
|
[28] |
KUWAHARA Y, KANG D Y, COPELAND J R, et al. Dramatic enhancement of CO2 uptake by poly(ethyleneimine) using zirconosilicate supports[J]. Journal of the American Chemical Society, 2012, 134(26):10757-10760.
|
[29] |
KUWAHARA Y, KANG D Y, COPELAND J R, et al. Enhanced CO2 adsorption over polymeric amines supported on heteroatom-incorporated SBA-15 silica:impact of heteroatom type and loading on sorbent structure and adsorption performance[J]. Chemistry-A European Journal, 2012, 18(52):16649-16664.
|
[30] |
AHN H, MOON J H, HYUN S H, et al. Diffusion mechanism of carbon dioxide in zeolite 4A and CaX pellets[J]. Adsorption, 2004, 10(2):111-128.
|
[31] |
NEWALKAR B L, CHOUDARY N V, TURAGA U T, et al. Adsorption of light hydrocarbons on HMS type mesoporous silica[J]. Microporous & Mesoporous Materials, 2003, 65(2):267-276.
|
[32] |
DO D D. Adsorption Analysis:Equilibria and Kinetics[M]. London:Imperial College Press, 1998.
|
[33] |
ZHANG X, QIN H, ZHENG X, et al. Development of efficient amine-modified mesoporous silica SBA-15 for CO2 capture[J]. Materials Research Bulletin, 2013, 48(10):3981-3986.
|
[34] |
LIU Z L, TENG Y, ZHANG K, et al. CO2 adsorption properties and thermal stability of different amine-impregnated MCM-41 materials[J]. Journal of Fuel Chemistry & Technology, 2013, 41(4):469-475.
|
[35] |
SAYARI A, HEYDARIGORJI A, YANG Y. CO2-induced degradation of amine-containing adsorbents:reaction products and pathways[J]. Journal of the American Chemical Society, 2012, 134(33):13834-13842.
|
[36] |
DIDAS S A, ZHU R, BRUNELLI N A, et al. Thermal, oxidative and CO2 induced degradation of primary amines used for CO2 capture:effect of alkyl linker on stability[J]. Journal of Physical Chemistry C, 2014, 118(23):12302-12311.
|
[37] |
REZAEI F, LIVELY R P, LABRECHE Y, et al. Aminosilane-grafted polymer/silica hollow fiber adsorbents for CO2 capture from flue gas[J]. ACS Applied Materials & Interfaces, 2013, 5(9):3921-3931.
|