化工学报 ›› 2018, Vol. 69 ›› Issue (12): 5326-5331.doi: 10.11949/j.issn.0438-1157.20180398

• 材料化学工程与纳米技术 • 上一篇    下一篇

高弹性自愈水凝胶(C3H5O)1CB[7]/PAA的制备及性能

杨琴1, 赵娜1, 房春娟1, 赵军凯1, 王文东2   

  1. 1. 西安建筑科技大学化学与化工学院, 陕西 西安 710055;
    2. 西安建筑科技大学环境与市政工程学院, 陕西 西安 710055
  • 收稿日期:2018-04-12 修回日期:2018-09-06 出版日期:2018-12-05 发布日期:2018-12-05
  • 通讯作者: 杨琴 E-mail:1004240879@qq.com
  • 基金资助:

    陕西省教育厅专项科研计划项目(17JK0432);陕西省重大科技成果转化引导专项项目(2016KTCG01-17).

Preparation and mechanical properties of novel (C3H5O)1CB[7]/PAA hydrogel with high elasticity and self-healing properties

YANG Qin1, ZHAO Na1, FANG Chunjuan1, ZHAO Junkai1, WANG Wendong2   

  1. 1. College of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China;
    2. School of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China
  • Received:2018-04-12 Revised:2018-09-06 Published:2018-12-05 Online:2018-12-05
  • Supported by:

    supported by the Science and Technology Overall Plan of Shaanxi Province (17JK0432) and the Special Project of Transformation and Guidance of Major Scientific and Technological Achievements in Shaanxi (2016KTCG01-17).

摘要:

用丙烯氧基七元瓜环((C3H5O)1CB[7])替代传统的交联剂NN-亚甲基双丙烯酰胺(BIS)制备了新型丙烯氧基七元瓜环/聚丙烯酸凝胶((C3H5O)1CB[7]/PAA gel),该凝胶具有高弹性和自愈性。采用IR和1H NMR技术对其结构进行表征,研究了该水凝胶的溶胀、力学性能,宏观观察了其自愈性能。结果表明:(C3H5O)1CB[7]/PAA gel的网络形成作用力主要是多重氢键;在丙烯酸(AA)17.2%,水82.1%,(C3H5O)1CB[7]0.33%,过硫酸钾(KPS)0.33%时该水凝胶具有良好的自愈性及力学性能,其最大伸长量为105.6 cm,为原长的86倍,弹性模量0.39 kPa,平衡溶胀率是600%。该水凝胶有望成为一种潜在的生物组织工程材料。

关键词: 丙烯酸, 自愈水凝胶, 凝胶, 聚合物, 制备

Abstract:

A novel type of propenyloxy cucurbituril [7]/polyacrylic hydrogel ((C3H5O)1CB [7]/PAA gel) with high elasticity and self-healing properties was fabricated by making use of propenyloxy cucurbituril [7] to replace N,N-methylene-bis-acrylamide (BIS), which is a traditional cross-linking agent. The structure of the hydrogel was characterized by IR and1H NMR. The swelling and mechanical properties of the hydrogel were studied, and the self-healing properties were observed macroscopically. The results show that multiple hydrogen bonds was considered as the mainly force in the formation of (C3H5O)1CB [7]/PAA gel's network. The hydrogel has excellent self-healing and mechanical properties in acrylic acid(AA 17.2%, water 82.1%, propenyloxy cucurbituril [7] ((C3H5O)1CB [7]) 0.33%, potassium persulfate(KPS) 0.33%. The maximum elongation of (C3H5O)1CB[7]/PAA gel is 105.6 cm (86 times the original length) and the elastic modulus is 0.39 kPa, and the equilibrium swelling ratio is 600%. (C3H5O)1CB[7]/PAA gel would be a potential bio-tissue engineering material.

Key words: acrylic acid, self-healing hydrogel, gel, polymers, preparation

中图分类号: 

  • O632.51
[1] BUWALDA S J, BOERE K W M, DIJKSTRA P J, et al. Hydrogels in a historical perspective:from simple networks to smart materials[J]. Journal of Controlled Release, 2014, 190:254-273.
[2] LEIJTEN J, SEO J, KAN Y, et al. Spatially and temporally controlled hydrogels for tissue engineering[J]. Materials Science & Engineering R Reports, 2017, 119:1-35.
[3] ALGE D L, AZAGARSAMY M A, DONOHUE D F, et al. Synthetically tractable click hydrogels for three-dimensional cell culture formed using tetrazine-norbornene chemistry[J]. Biomacromolecules, 2013, 14(4):949-53.
[4] 王露一, 单国荣. 聚环氧乙烷对PAMPS/PAM双网络水凝胶结构和性能的影响[J]. 化工学报, 2012, 63(8):2642-2647. WANG L Y, SHAN G R. Influence of poly(ethylene oxide) on structure and properties of PAMPS/PAM double network hydrogels[J]. CIESC Journal, 2012, 63(8):2642-2647.
[5] 张小燕. pH振荡反应及水凝胶的性能研究[D]. 兰州:西北师范大学, 2014. ZHANG X Y. pH oscillation chemical reactions and the properties of hydrogels[D]. Lanzhou:Northwest Normal University, 2014.
[6] BAE K H, WANG L S, KURISAWA M. Injectable biodegradable hydrogels:progress and challenges[J]. Journal of Materials Chemistry B, 2013, 1(40):5371-5388.
[7] BUWALDA S J, VERMONDEN T, HENNINK W E. Hydrogels for therapeutic delivery:current developments and future directions[J]. Biomacromolecules, 2017, 18(2):316-330.
[8] JIANG Y, CHEN J, DENG C, et al. Click hydrogels, microgels and nanogels:emerging platforms for drug delivery and tissue engineering[J]. Biomaterials, 2014, 35(18):4969-4985.
[9] BILLIET T, VANDENHAUTE M, SCHELFHOUT J, et al. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering[J]. Biomaterials, 2012, 33(26):6020-6041.
[10] ZHU L, QIU J, SAKAI E, et al. Design of a rubbery carboxymethyl cellulose/polyacrylic acid hydrogel via visible-light-triggered polymerization[J]. Macromolecular Materials & Engineering, 2017, 302(6):1600509.
[11] LIU Z, DU J, TAN Y, et al. Strengthening network of polyacrylic acid/silica nanocomposite hydrogels[J]. Polymer Composites, 2018, 39(11):3969-3976.
[12] DUAN J J, ZHANG L N. Robust and smart hydrogels based on natural polymers[J]. Chinese J. Polym. Sci., 2017, 35(10):1165-1180.
[13] GONG J P, KATSUYAMA Y, KUROKAWA T, et al. Double-network hydrogels with extremely high mechanical strength[J]. Advanced Materials, 2003, 15(14):1155-1158.
[14] CHEN Q, ZHU L, ZHAO C, et al. A robust, one-pot synthesis of highly mechanical and recoverable double network hydrogels using thermoreversible sol-gel polysaccharide[J]. Advanced Materials, 2013, 25(30):4171-4176.
[15] TUNCABOYLU D C, SARI M, OPPERMANN W, et al. Tough and self-healing hydrogels formed via hydrophobic interactions[J]. Macromolecules, 2011, 44(12):4997-5005.
[16] WANG J, LIN L, CHENG Q, et al. A strong bio-inspired layered PNIPAM-clay nanocomposite hydrogel[J]. Angewandte Chemie, 2012, 51(19):4494-4494.
[17] YANG J, ZHAO J J, XU F, et al. Revealing strong nanocomposite hydrogels reinforced by cellulose nanocrystals:insight into morphologies and interactions[J]. ACS Applied Materials & Interfaces, 2013, 5(24):12960-12967.
[18] JIANG X, XIANG N, WANG J, et al. Preparation and characterization of hybrid double network chitosan/poly (acrylic amide-acrylic acid) high toughness hydrogel through Al3+ crosslinking[J]. Carbohydrate Polymers, 2017, 173:701-706.
[19] SU Q, DUAN L, ZOU M, et al. The tough allograft adhesive behavior between polyacrylamide and poly (acrylic acid) hydrophobic association hydrogels[J]. Materials Chemistry & Physics, 2017, 193:57-62.
[20] MARTIN A D, WOJCIECHOWSKI J P, ROBINSON A B, et al. Controlling self-assembly of diphenylalanine peptides at high pH using heterocyclic capping groups[J]. Scientific Reports, 2017, 7:43947.
[21] YANG Q, LÜ J. A pH-responsive self-healing gel with cross-linking of cucurbituril(CB[n]) via hydrogen bonding[J]. Chemistry Letters, 2018, 47(2):192-195.
[22] 毕强, 胡英鹏, 杨琴, 等. 水-盐酸两步分离瓜环混合物[J]. 有机化学, 2007, 27(7):880-884. BI Q, HU Y P, YANG Q, et al. A two-step approach for cucurbit[n]uril compound separating by water and hydrochloric acid[J]. Chinese Journal of Organic Chemistry, 2007, 27(7):880-884.
[23] YANG Q, LI X L, JIANG Y, et al. Microwave synthesis, charaterisation and electrochemical property of cucurbit[n]urils[J]. Materials Research Innovations, 2014, 18(4):280-283.
[24] AHN Y, JANG Y, SELVAPALAM N, et al. Supramolecular velcro for reversible underwater adhesion[J]. Angewandte Chemie, 2013, 52(11):3140-3144.
[25] 李文姣. 牙根管充填用纳米复合水凝胶的设计及制备[D]. 上海:东华大学, 2015. LI W J. Design and preparation of nanocomposite hydrogels for application in canal filling materials[D]. Shanghai:Donghua University, 2015.
[26] 尹云雷, 普丹丹, 周洋洋, 等. 丝素/聚己内酯纳米纤维膜结构与力学性能的研究[J]. 纺织导报, 2016, (8):50-53. YIN Y L, PU D D, ZHOU Y Y, et al. Structure and mechanical properties of silk fibroin/poly(ε-caprolactone) nanofiber membranes[J]. China Textile Leader, 2016, (8):50-53.
[27] 洪浩群, 李雪松, 张海燕. 聚丙烯酸水凝胶自修复性能及溶胀行为的研究[J]. 功能材料, 2016, 47(9):9012-9016. HONG H Q, LI X S, ZHANG H Y. Study on the self-healing performances and swelling behavior of polyacrylic acid hydrogels[J]. Journal of Functional Materials, 2016, 47(9):9012-9016.
[28] 雷光财. 丙烯酸系高吸水性树脂微球多孔结构的形成/控制及成孔机理研究[D]. 厦门:厦门大学, 2009. LEI G C. Formation and control and of porous structure of acrylate super-absorbent resin micro-spheres and mechanism research of pore-forming[D]. Xiamen:Xiamen University, 2009.
[29] 刘延平. 温敏性水凝胶的合成及相变机理[D]. 青岛:青岛科技大学, 2012. LIU Y P. Synthesis and phase transition mechanism of temperature-sensitive hydrogel[D]. Qingdao:Qingdao University of Science and Technology, 2012.
[30] 董坤, 魏钊, 杨志懋, 等. 自愈合凝胶:结构、性能及展望[J]. 中国科学:化学, 2012, 42(6):741-756. DONG K, WEI Z, YANG Z M, et al. Self-healing gels:structure, performance and future perspective[J]. Scientia Sinica, Chimica, 2012, 42(6):741-756.
[1] 李文涛, 林慧娟, 钟海. 原位构建富氟SEI的凝胶电解质用于金属锂二次电池[J]. 化工学报, 2022, 73(7): 3240-3250.
[2] 高端辉, 肖卫强, 高峰, 夏倩, 汪曼秋, 卢昕博, 詹晓力, 张庆华. 聚酰亚胺基气凝胶材料的制备与应用[J]. 化工学报, 2022, 73(7): 2757-2773.
[3] 宋超宇, 熊亚选, 张金花, 金宇贺, 药晨华, 王辉祥, 丁玉龙. 污泥焚烧炉渣基定型复合相变储热材料的制备和性能[J]. 化工学报, 2022, 73(5): 2279-2287.
[4] 郭行, 韩纹莉, 董晓玲, 李文翠. 调控炭化过程优化煤基硬炭负极储钠性能[J]. 化工学报, 2022, 73(4): 1794-1806.
[5] 钟国栋, 邓超和, 王洋, 王佳韵, 王如竹. 蜂窝状水凝胶吸附床传热传质特性数值模拟及验证[J]. 化工学报, 2022, 73(3): 1083-1092.
[6] 张瑾渊, 徐娜, 贺文云, 吕耀东, 刘子璐, 张兴芳. 消防用PEO/OTAC/NaSal减阻体系的介观分子动力学分析[J]. 化工学报, 2022, 73(3): 1157-1165.
[7] 许超群, 俞娟, 范一民, 王基夫, 储富祥. 原子转移自由基聚合法接枝改性纳米纤维素及其功能化应用[J]. 化工学报, 2022, 73(3): 1022-1043.
[8] 郑哲楠, 高翔, 罗英武, 黄杰. 紫外光交联法制备全固态聚合物电解质[J]. 化工学报, 2022, 73(1): 441-450.
[9] 纪文涛, 李璐, 李忠, 何佳, 杨晶晶, 王燕. 聚磷酸铵抑制PMMA粉尘爆炸特性研究[J]. 化工学报, 2022, 73(1): 461-469.
[10] 孙艺, 姜润韬, 金晶, 李凯涛, 林彦军, 刘军枫, 段雪. 高分子材料阻燃与抑烟的分立设计思想[J]. 化工学报, 2022, 73(1): 18-31.
[11] 周东一, 肖湘华, 肖飚, 刘益才. 脂肪类复合相变储能材料中脂肪酸最佳质量含量的确定方法[J]. 化工学报, 2021, 72(S1): 560-566.
[12] 李海涛, 孟平凡, 张因, 武瑞芳, 黄鑫, 班丽君, 韩旭东, 席琳, 王兴皓, 田博辉, 赵永祥. SiO2网络限域CuO纳米晶的甲醛乙炔化性能研究[J]. 化工学报, 2021, 72(9): 4708-4717.
[13] 演康, 杨颂, 刘守军, 杨超, 樊惠玲, 上官炬. 低阶煤原位制备ZnO基活性炭脱硫剂[J]. 化工学报, 2021, 72(9): 4921-4930.
[14] 王欢, 符方宝, 李琼, 席跃宾, 杨东杰. 木质素碳纳米材料制备及在催化中的应用研究进展[J]. 化工学报, 2021, 72(9): 4445-4457.
[15] 邓超和, 王佳韵, 李金凤, 刘业凤, 王如竹. 可低温驱动的凝胶复合吸附剂的制备及吸/脱附性能研究[J]. 化工学报, 2021, 72(8): 4401-4409.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!