化工学报 ›› 2016, Vol. 67 ›› Issue (1): 202-208.DOI: 10.11949/j.issn.0438-1157.20151015
刘壮1, 谢锐1, 巨晓洁1,2, 汪伟1, 褚良银1,2
收稿日期:
2015-06-29
修回日期:
2015-07-25
出版日期:
2016-01-05
发布日期:
2016-01-05
通讯作者:
褚良银
基金资助:
国家自然科学基金项目(20825622, 21136006)。
LIU Zhuang1, XIE Rui1, JU Xiaojie1,2, WANG Wei1, CHU Liangyin1,2
Received:
2015-06-29
Revised:
2015-07-25
Online:
2016-01-05
Published:
2016-01-05
Supported by:
supported by the National Natural Science Foundation of China (20825622, 21136006).
摘要:
环境响应智能水凝胶应用于化学传感器、化学微阀、人造肌肉、药物控释载体、物质分离等领域时常常需要快速响应特性,提高智能水凝胶的响应速率成为了智能水凝胶研究领域的重要课题之一。本文主要综述了具有快速响应特性的环境响应智能水凝胶的构建策略与方法,重点介绍了3类具有不同结构的快速响应型智能水凝胶,即具有多孔结构的快速响应智能水凝胶、具有梳状结构的快速响应智能水凝胶以及具有微球复合结构的快速响应智能水凝胶。
中图分类号:
刘壮, 谢锐, 巨晓洁, 汪伟, 褚良银. 具有快速响应特性的环境响应型智能水凝胶的研究进展[J]. 化工学报, 2016, 67(1): 202-208.
LIU Zhuang, XIE Rui, JU Xiaojie, WANG Wei, CHU Liangyin. Progress in stimuli-responsive smart hydrogels with rapid responsive characteristics[J]. CIESC Journal, 2016, 67(1): 202-208.
[1] | WICHERLE O, LIM D. Hydrophilic gels for biological use [J]. Nature, 1960, 185: 117-118. |
[2] | LEE K Y, MOONEY D J. Hydrogels for tissue engineering [J]. Chem. Rev., 2001, 101: 1869-1879. |
[3] | LIU M J, ISHIDA Y, EBINA Y, et al. An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets [J]. Nature, 2015, 517: 68-72 |
[4] | CHU L Y, XIE R, JU X J, et al. Smart Hydrogel Functional Materials[M]. Berlin, Heidelberg: Springer-Verlag, 2013. |
[5] | HU Z B, CHEN Y Y, WANG C J, et al. Polymer gels with engineered environmentally responsive surface patterns [J]. Nature, 1998, 393: 149-152. |
[6] | JUODKAZIS S, MUKAI N, WAKAKI R, et al. Reversible phase transitions in polymer gels induced by radiation forces [J]. Nature, 2000, 408, 178-181. |
[7] | XIAO X C, CHU L Y, CHEN W M, et al. Positively thermo-sensitive monodisperse core-shell microspheres [J]. Adv. Funct. Mater., 2003, 13: 847-852. |
[8] | KIM S J, SPINKS G M, PROSSER S, et al. Surprising shrinkage of expanding gels under an external load [J]. Nat. Mater., 2006, 5: 48-51. |
[9] | LEE B P, KONST S. Novel hydrogel actuator inspired by reversible mussel adhesive protein chemistry [J]. Adv. Mater., 2014, 26: 3415-3419. |
[10] | LEE K, ASHER S A. Photonic crystal chemical sensors: pH and ionic strength [J]. J. Am. Chem. Soc., 2000, 122, 9534-9537. |
[11] | SHIM T S, KIM S H, HEO C J, et al. Controlled origami folding of hydrogel bilayers with sustained reversibility for robust microcarriers [J]. Angew. Chem. Int. Ed., 2012, 51: 1420-1423. |
[12] | MI P, JU X J, XIE R, et al. A novel stimuli-responsive hydrogel for K+-induced controlled-release [J]. Polymer, 2010, 51:1648-1653. |
[13] | JIANG M Y, JU X J, FANG L, et al. A novel smart microsphere with K+-induced shrinking and aggregating property based on responsive host-guest system [J]. ACS Appl. Mater. Inter., 2014, 6: 19405-19415. |
[14] | TU T, FANG W W, SUN Z M. Visual-size molecular recognition based on gels [J]. Adv. Mater., 2013, 25: 5304-5313. |
[15] | SAMOEI G K, WANG W H, ESCOBEDO J O, et al. A chemomechanical polymer that functions in blood plasma with high glucose selectivity [J]. Angew. Chem. Int. Edit., 2006, 45: 5319-5322. |
[16] | ZHANG S B, CHU L Y, XU D, et al. Poly(N-isopropylacrylamide)-based comb-type grafted hydrogel with rapid response to blood glucose concentration change at physiological temperature [J]. Polym. Adv. Technol., 2008, 19: 937-743. |
[17] | JUODKAZIS S, MUKAI N, WAKAKI R, et al. Reversible phase transitions in polymer gels induced by radiation forces [J]. Nature, 2000, 408: 178-181. |
[18] | TATSUMA T, TAKADA K, MIYAZAKI T. UV-light-induced swelling and visible-light-induced shrinking of a TiO2-containing redox gel [J]. Adv. Mater., 2007, 19: 1249-1521. |
[19] | KWON I C, BAE Y H, KIM S W. Electrically erodible polymer gel for controlled release of drugs [J]. Nature, 1991, 354: 291-293. |
[20] | BEEBE D J, MOORE J S, BAUER J M, et al. Functional hydrogel structures for autonomous flow control inside microfluidic channels [J]. Nature, 2000, 404: 588-590. |
[21] | DONG L, AGARWAL A K, BEEBE D J, et al. Adaptive liquid microlenses activated by stimuli-responsive hydrogels [J]. Nature, 2006, 442: 551-554. |
[22] | CHEN C, ZHU Y H, BAO H, et al. Ethanol-assisted multi-sensitive poly(vinyl alcohol) photonic crystal sensor [J]. Chem. Commun., 2011, 47: 5530-5532. |
[23] | SIDORENKO A, KRUPENKIN T, TAYLOR A, et al. Reversible switching of hydrogel-actuated nanostructures into complex micropatterns [J]. Science, 2007, 315: 487-490. |
[24] | TAKASHIMA Y, HATANAKA S, OTSUBO M, et al. Expansion-contraction of photoresponsive artificial muscle regulated by host-guest interactions [J]. Nat. Commun., 2012, 3: 1270. |
[25] | CALVERT P. Hydrogels for soft machines [J]. Adv. Mater., 2009, 21: 743-756. |
[26] | YAO C, LIU Z, YANG C, et al. Poly(N-isopropylacrylamide)-clay nanocomposite hydrogels with responsive bending property as temperature-controlled manipulators [J]. Adv. Funct. Mater., 2015 25: 2980-2991 |
[27] | HE X M, AIZENBERG M, KUKSENOK O, et al. Synthetic homeostatic materials with chemo-mechano-chemical self-regulation [J]. Nature, 2012, 487: 214-218. |
[28] | KUMACHEVA E. Hydrogels: the catalytic curtsey [J]. Nat. Mater., 2012, 11: 665-666. |
[29] | SELIKTAR D. Designing cell-compatible hydrogels for biomedical applications [J]. Science, 2012, 336: 1124-1128. |
[30] | STUART M A C, HUCK W T S, GENZER J, et al. Emerging applications of stimuli-responsive polymer materials [J]. Nat. Mater., 2010, 9: 101-113. |
[31] | LIU Z, LIU L, JU X J, et al. K+-recognition capsules with squirting release mechanisms [J]. Chem. Commun., 2011, 47: 12283-12285. |
[32] | NAGASE K, KOBAYASHI J, OKANO T. Temperature-responsive intelligent interfaces for biomolecular separation and cell sheet engineering [J]. J. R Soc. Interface, 2009, 6: S293-S309. |
[33] | YOSHIDA R, UCHIDA U, KANEKO Y, et al. Comb-type grafted hydrogels with rapid deswelling response to temperature changes [J]. Nature, 1995, 374: 240-242. |
[34] | TANAKA T, FILLMORE D J. Kinetics of swelling of gels [J]. J. Chem. Phys., 1979, 70: 1214-1218. |
[35] | SERIZAWA T, WAKITA K, KANEKO T, et al. Thermoresponsive properties of porous poly(N-isopropylacrylamide) hydrogels prepared in the presence of nanosized silica particles and subsequent acid treatment [J]. J. Polym. Sci. Pol. Chem., 2002, 40: 4228-4235. |
[36] | SERIZAWA T, WAKITA K, AKASHI M. Rapid deswelling of porous poly(N-isopropylacrylamide) hydrogels prepared by incorporation of silicon particles [J]. Macromolecules, 2002, 35: 10-12. |
[37] | CHU L Y, KIM J W, SHAH R K, et al. Monodisperse thermoresponsive microgels with tunable volume-phase transition kinetics [J]. Adv. Funct. Mater., 2007, 17: 3499-3504 |
[38] | MOU C L, JU X J, ZHANG L, et al. Monodisperse and fast-responsive poly(N-isopropylacrylamide) microgels with open-celled porous structure [J]. Langmuir, 2014, 30(5): 1455-1464. |
[39] | MOU C L. Study on microfluidic fabrication of stimuli-responsive microspheres and microcapsules with novel structures and functions[D]. Chengdu: Sichuan University, 2014: 49-75. |
[40] | LEE W F, YEH Y C. Effect of porosigen and hydrophobic monomer on the fast swelling-deswelling behaviors for the porous thermoreversible copolymeric hydrogels [J]. J. Appl. Polym. Sci., 2006, 100: 3152-3160 |
[41] | ZHANG X Z, YANG Y Y, CHUNG T S, et al. Preparation and characterization of fast response macroporous poly(N-isopropylacrylamide) hydrogels [J]. Langmuir, 2001, 17: 6094-6099 |
[42] | ZHUO R X, LI W. Preparation and characterization of macroporous poly(N-isopropylacrylamide) hydrogels for the controlled release of proteins [J]. J. Polym. Sci. Pol. Chem., 2003, 41: 152-159. |
[43] | WU X S, HOFFMAN A S, PAUL Y. Synthesis and characterization of thermally reversible macroporous poly(N-isopropylacrylamide) hydrogels [J]. J. Polym. Sci. Pol. Chem.. 1992, 30: 2121-2129. |
[44] | CHEN J, PARK H, PARK K. Synthesis of superporous hydrogels: Hydrogels with fast swelling and superabsorbent properties [J]. J. Biomed. Mater. Res., 1999, 44: 53-62. |
[45] | ZHANG Y, TAN T W. Preparation of fast responsive, pH sensitive polyaerylic acid gel with different pore-forming agents [J]. J. Biomed. Eng., 2007, 24:884-889. |
[46] | XUE W, HAMLEY I W, HUGLIN M B. Rapid swelling and deswelling of thermoreversible hydrophobically modified poly(N-isopropylacrylamide) hydrogels prepared by freezing polymerization [J]. Polymer, 2002, 43: 5181-5186 |
[47] | XUE W, CHAMP S, HUGLIN M B, et al. Rapid swelling and deswelling in cryogels of crosslinked poly(N-isopropylacrylamide-co-acrylic) [J]. Eur. Polym. J., 2004, 40: 467-476. |
[48] | ZHANG J, CHU L Y, LI Y K, et al. Dual thermo-and pH-sensitive poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with rapid response behaviors [J]. Polymer, 2007, 48: 1718-1728. |
[49] | ZHANG J, CHU L Y, CHENG C J, et al. Graft-type poly(N-isopropylacrylamide-co-acrylic acid) microgels exhibiting rapid thermo-and pH-responsive properties [J]. Polymer, 2008, 49: 2595-2603. |
[50] | ZHANG J, XIE R, ZHANG S B, et al. Rapid pH/temperature-responsive cationic hydrogels with dual stimuli-sensitive grafted side chains [J]. Polymer, 2009, 50: 2516-2525. |
[51] | WANG J P, GAN D J, LYON L A, et al. Temperature-jump investigations of the kinetics of hydrogel nanoparticle volume phase transitions [J]. J. Am. Chem. Soc., 2001, 123: 11284-11289. |
[52] | ZHANG J T, HUANG S W, XUE Y N, et al. poly(N-isopropylacrylamide) nanoparticle-incorporated PNIPAAm hydrogels with fast shrinking kinetics [J]. Macromol. Rapid Comm., 2005, 26: 1346-1350. |
[53] | YUE L L, XIE R, WEI J, et al. Nano-gel containing thermo-responsive microspheres with fast response rate owing to hierarchical phase-transition mechanism [J]. J. Colloid Interf. Sci., 2012, 377: 137-144. |
[54] | CHO E C, KIM J W, FERNANDEZ-NIEVES A, et al. Highly responsive hydrogel scaffolds formed by three-dimensional organization of microgel nanoparticles [J]. Nano Letters, 2008, 8: 168-172 |
[55] | CHO E C, KIM J W, HYUN D C, et al. Regulating volume transitions of highly responsive hydrogel scaffolds by adjusting the network properties of microgel building block colloids [J]. Langmuir, 2010, 26: 3854-3859. |
[56] | XIA L W, XIE R, JU X J, et al. Nano-structured smart hydrogels with rapid response and high elasticity [J]. Nature Commun., 2013, 4: 2226.sup>-recognition capsules with squirting release mechanisms[J]. Chem. Commun., 2011, 47: 12283-12285. |
[32] | . Nagase K, Kobayashi J, Okano T. Temperature-responsive intelligent interfaces for biomolecular separation and cell sheet engineering[J]. J. R Soc. Interface, 2009, 6: S293-S309. |
[33] | . Yoshida R, Uchida U, Kaneko Y, Sakai K, Kikuchi A, Sakurai Y, Okano T. Comb-type grafted hydrogels with rapid deswelling response to temperature changes[J]. Nature, 1995, 374: 240-242. |
[34] | . Tanaka T, Fillmore D J. Kinetics of swelling of gels[J]. J. Chem. Phys., 1979, 70: 1214-1218. |
[35] | . Serizawa T, Wakita K, Kaneko T, Akashi M. Thermoresponsive properties of porous poly(N-isopropylacrylamide) hydrogels prepared in the presence of nanosized silica particles and subsequent acid treatment[J]. J. Polym. Sci. Pol. Chem., 2002, 40: 4228-4235. |
[36] | . Serizawa T, Wakita K, Akashi M. Rapid deswelling of porous poly(N-isopropylacrylamide) hydrogels prepared by incorporation of silicon particles[J]. Macromolecules, 2002, 35: 10-12. |
[37] | . Chu L Y, Kim J W, Shah R K, Weitz D A. Monodisperse thermoresponsive microgels with tunable volume-phase transition kinetics[J]. Adv. Funct. Mater., 2007, 17: 3499-3504 |
[38] | . Mou C L, Ju X J, Zhang L, Xie R, Wang W, Deng N N, Wei J, Chen Q M, Chu L Y. Monodisperse and fast-responsive poly(N-isopropylacrylamide) microgels with open-celled porous structure[J]. Langmuir, 2014, 30(5): 1455-1464. |
[39] | . Mou C L (牟川淋). Study on microfluidic fabrication of stimuli-responsive microspheres and microcapsules with novel structures and functions[D]. Doctor Thesis of Sichuan University, 2014: 49-75. |
[40] | . Lee W F, Yeh Y C. Effect of porosigen and hydrophobic monomer on the fast swelling-deswelling behaviors for the porous thermoreversible copolymeric hydrogels[J]. J. Appl. Polym. Sci., 2006, 100: 3152-3160 |
[41] | . Zhang X Z, Yang Y Y, Chung T S, Ma K X. Preparation and characterization of fast response macroporous poly(N-isopropylacrylamide) hydrogels[J]. Langmuir, 2001, 17: 6094-6099 |
[42] | . Zhuo R X, Li W. Preparation and characterization of macroporous poly(N-isopropylacrylamide) hydrogels for the controlled release of proteins[J]. J. Polym. Sci. Pol. Chem., 2003, 41: 152-159. |
[43] | . Wu X S, Hoffman A S, Paul Y. Synthesis and characterization of thermally reversible macroporous poly(N-isopropylacrylamide) hydrogels[J]. J. Polym. Sci. Pol. Chem.. 1992, 30: 2121-2129. |
[44] | . Chen J,Park H,Park K. Synthesis of superporous hydrogels: Hydrogels with fast swelling and superabsorbent properties[J]. J. Biomed. Mater. Res., 1999, 44: 53-62. |
[45] | . Zhang Y (张艳), Tan T W (谭天伟). Preparation of fast responsive, pH sensitive polyaerylic acid gel with different pore-forming agents[J]. J. Biomed. Eng., 2007, 24, 884-889. |
[46] | . Xue W, Hamley I W, Huglin M B. Rapid swelling and deswelling of thermoreversible hydrophobically modified poly(N-isopropylacrylamide) hydrogels prepared by freezing polymerization[J]. Polymer, 2002, 43: 5181-5186 |
[47] | . Xue W, Champ S, Huglin M B, Jones T G C. Rapid swelling and deswelling in cryogels of crosslinked poly(N-isopropylacrylamide-co-acrylic)[J]. Eur. Polym. J., 2004, 40: 467-476. |
[48] | . Zhang J, Chu L Y, Li Y K, Lee Y M. Dual thermo- and pH-sensitive poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with rapid response behaviors[J]. Polymer, 2007, 48: 1718-1728. |
[49] | . Zhang J, Chu L Y, Cheng C J, Mi D F, Zhou M Y, Ju X J. Graft-type poly(N-isopropylacrylamide-co-acrylic acid) microgels exhibiting rapid thermo- and pH-responsive properties[J]. Polymer, 2008, 49: 2595-2603. |
[50] | . Zhang J, Xie R, Zhang S B, Cheng C J, Ju X J, Chu L Y. 2009. Rapid pH/temperature-responsive cationic hydrogels with dual stimuli-sensitive grafted side chains[J]. Polymer, 2009, 50: 2516-2525. |
[51] | . Wang J P, Gan D J, Lyon L A, El-Sayed M A. Temperature-jump investigations of the kinetics of hydrogel nanoparticle volume phase transitions[J]. J. Am. Chem. Soc., 2001, 123: 11284-11289. |
[52] | . Zhang J T, Huang S W, Xue Y N, Zhuo R X. poly(N-isopropylacrylamide) nanoparticle-incorporated PNIPAAm hydrogels with fast shrinking kinetics[J]. Macromol. Rapid Comm., 2005, 26: 1346-1350. |
[53] | . Yue L L, Xie R, Wei J, Ju X J, Wang W, Chu L Y. Nano-gel containing thermo-responsive microspheres with fast response rate owing to hierarchical phase-transition mechanism[J]. J. Colloid Interf. Sci., 2012, 377: 137-144. |
[54] | . Cho E C, Kim J W, Fernandez-Nieves A, Weitz D A. Highly responsive hydrogel scaffolds formed by three-dimensional organization of microgel nanoparticles[J]. Nano Letters, 2008, 8: 168-172 |
[55] | . Cho E C, Kim J W, Hyun D C, Jeong U, Weitz D A. Regulating volume transitions of highly responsive hydrogel scaffolds by adjusting the network properties of microgel building block colloids[J]. Langmuir, 2010, 26: 3854-3859. |
[56] | . Xia L W, Xie R, Ju X J, Wang W, Chen Q M, Chu L Y. Nano-structured smart hydrogels with rapid response and high elasticity[J]. Nature Commun., 2013, 4: 2226. |
[1] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[2] | 刘杰, 吴立盛, 李锦锦, 罗正鸿, 周寅宁. 含乙烯基胺酯键聚醚类可逆交联聚合物的制备及性能研究[J]. 化工学报, 2023, 74(7): 3051-3057. |
[3] | 龙臻, 王谨航, 任俊杰, 何勇, 周雪冰, 梁德青. 离子液体协同PVCap抑制天然气水合物生成实验研究[J]. 化工学报, 2023, 74(6): 2639-2646. |
[4] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[5] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
[6] | 张建华, 陈萌萌, 孙雅雯, 彭永臻. 部分短程硝化同步除磷耦合Anammox实现生活污水高效脱氮除磷[J]. 化工学报, 2023, 74(5): 2147-2156. |
[7] | 龙臻, 王谨航, 何勇, 梁德青. 离子液体与动力学抑制剂作用下混合气体水合物生成特性研究[J]. 化工学报, 2023, 74(4): 1703-1711. |
[8] | 吴学红, 栾林林, 陈亚南, 赵敏, 吕财, 刘勇. 可降解柔性相变薄膜的制备及其热性能[J]. 化工学报, 2023, 74(4): 1818-1826. |
[9] | 吕阳光, 左培培, 杨正金, 徐铜文. 三嗪框架聚合物膜用于有机纳滤甲醇/正己烷分离[J]. 化工学报, 2023, 74(4): 1598-1606. |
[10] | 罗来明, 张劲, 郭志斌, 王海宁, 卢善富, 相艳. 1~5 kW高温聚合物电解质膜燃料电池堆的理论模拟与组装测试[J]. 化工学报, 2023, 74(4): 1724-1734. |
[11] | 刘海芹, 李博文, 凌喆, 刘亮, 俞娟, 范一民, 勇强. 羟基-炔点击化学改性半乳甘露聚糖薄膜的制备及性能研究[J]. 化工学报, 2023, 74(3): 1370-1378. |
[12] | 徐东, 田杜, 陈龙, 张禹, 尤庆亮, 胡成龙, 陈韶云, 陈建. 聚苯胺/二氧化锰/聚吡咯复合纳米球的制备及其电化学储能性[J]. 化工学报, 2023, 74(3): 1379-1389. |
[13] | 刘润竹, 储甜甜, 张孝阿, 王成忠, 张军营. α,ω-端羟基亚苯基氟硅聚合物的合成及性能[J]. 化工学报, 2023, 74(3): 1360-1369. |
[14] | 胡月, 马守骏, 蹇锡高, 翁志焕. 新型聚芳醚腈固化邻苯二甲腈树脂的研究[J]. 化工学报, 2023, 74(2): 871-882. |
[15] | 靳志远, 单国荣, 潘鹏举. AM/AMPS/SSS三元共聚物的制备及耐温耐盐性能[J]. 化工学报, 2023, 74(2): 916-923. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||