[1] |
ZHOU Q, DUAN Y F, ZHU C, et al. In-flight mercury removal and cobenefit of SO2 and NO reduction by NH4Br impregnated activated carbon injection in an entrained flow reactor[J]. Energy & Fuel, 2015, 29:8118-8125.
|
[2] |
LEE S H, RHIM Y J, CHO S P, et al. Carbon-based novel sorbent for removing gas-phase mercury[J]. Fuel, 2006, 85(2):219-226.
|
[3] |
缪超, 宋爱萍. 我国高硫石油焦市场现状及预测[J]. 石油规划设计, 2012, 23(1):16-22. LIAO C, SONG A P. Situation and forecast of high sulfur petroleum coke market in China[J]. Petroleum Planning & Engineering, 2012, 23(1):16-22.
|
[4] |
Zhuang Y, Thompson J S, Zygarlicke C J, et al. Impact of calcium chloride addition on mercury transformations and control in coal flue gas[J]. Fuel, 2007, 86(15):2351-2359.
|
[5] |
赵可, 张华伟, 陈江艳, 等. 改性石油焦脱除单质汞的实验研究[J]. 山东科技大学学报(自然科学版), 2016, 35(4):69-73. ZHAO K, ZHANG H W, CHEN J Y, et al. Removal of elemental mercury by the modified petroleum coke[J]. Journal of Shandong University of Science and Technology(Natural Science), 2016, 35(4):69-73.
|
[6] |
洪亚光, 段钰锋, 朱纯, 等. 载溴高硫石油焦活性炭脱汞实验研究[J]. 中国电机工程学报, 2014, 34(11):1762-1768. HONG Y g, DUAN Y f, ZHU C, et al. Experimental study on mercury removal of high-sulfur petroleum coke activated carbon impregnated with bromine[J]. Proceedings of the CSEE, 2014, 34(11):1762-1768.
|
[7] |
卓海波. 石油焦制备活性炭工艺条件的优化及孔结构表征[D]. 青岛:中国石油大学, 2007. ZHUO H B. Optimizing process for preparation of activated carbon from petroleum coke and characterization of its porosity[D]. Qingdao:China University of Petroleum, 2007.
|
[8] |
Gaur v, Asthana r, Verma n. Removal of SO2 by activated carbon fibers in the presence of O2 and H2O[J]. Carbon, 2006, 44:46-60.
|
[9] |
纪罗军, 金苏闵. 我国有色金属及烟气制酸环保技术进展与展望[J]. 硫酸工业, 2016, (4):1-8. JI L J, JIN S M. Environmental protection technical progress and outlook of China's nonferrous metallurgy and metallurgical acid production[J]. Sulphuric Acid Industry, 2016, (4):1-8.
|
[10] |
Stacy W O, Vastola F J, Walker Jr P L. Interaction of sulfur dioxide with active carbon[J]. Carbon, 1968, 6(6):917-923.
|
[11] |
Asasian N, Kaghazchi T, Faramarzi A, et al. Enhanced mercury adsorption capacity by sulfurization of activated carbon with SO2 in a bubbling fluidized bed reactor[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, (45):1588-1596.
|
[12] |
Yang C. Preparation, characterization and application of novel adsorbent from petroleum coke activated by sulfur dioxide[D]. Toronto:University of Toronto, 2002.
|
[13] |
Morris E A, Jia C Q. Effects of O2 on characteristics of sulfur added to petroleum coke through reaction with SO2[J]. Industrial and Engineering Chemistry Research, 2010, 49:12709-12717.
|
[14] |
Morris E A, Choi R, Jia C Q. Sulfur dioxide as an activating agent for sulfur-impregnated activated carbon produced from dense petroleum coke[J]. Journal of Sulfur Chemistry, 2013, 34(4):358-369.
|
[15] |
Wei Y Y, Yu D Q, Tong S T, et al. Effects of H2SO4 and O2 on Hg0 uptake capacity and reversibility of sulfur-impregnated activated carbon under dynamic conditions[J]. Environmental Science and Technology, 2015, 49:1706-1712.
|
[16] |
杜鸿飞, 段钰锋, 佘敏. 高硫石油焦热解过程及硫形态的变化特性[J]. 化工进展, 2016, 35(8):2420-2426. DU H F, DUAN Y F, SHE M. Research on pyrolysis process of high sulfur petroleum coke and the changes of sulfur species[J]. Chemical Industry and Engineering Progress, 2016, 35(8):2420-2426.
|
[17] |
Humeres E, Moreira R F P M, Peruch M G B. Reduction of SO2 on different carbons[J]. Carbon, 2002, 40(5):751-760.
|
[18] |
Humeres E, Moreira R F P M. Kinetics and mechanisms in flow systems:reduction of SO2 on carbons[J]. Journal of Physical Organic Chemistry, 2012, 25(11):1012-1026.
|
[19] |
Humeres E, Debacher N A, Smaniotto A, et al. Selective insertion of sulfurdioxide reduction intermediates on grapheme oxide[J]. Langmuir, 2014, 30(15):4301-4309.
|
[20] |
Smaniotto A, Humeres E, Debacher N A, et al. Interconversion and selective reactivity of sulfur dioxide reduction intermediates inserted on graphene oxide[C]//15th European Symposium on Organic Reactivity (ESOR). Kiel, Germany, 2015.
|
[21] |
Humeres E, Peruch M D B, Moreira R F P M, et al. Reduction of sulfur dioxide on carbons catalyzed by salts[J]. International Journal of Molecular Sciences, 2005, 6(1/2):130-142.
|
[22] |
Humeres E, Castro K M, Moreira R F P M, et al. Reactivity of the thermally stable intermediates of the reduction of SO2 on carbons and mechanisms of insertion of organic moieties in the carbon matrix[J]. Journal of Physical Chemistry, 2008, 112(2):581-589.
|
[23] |
Aronniemi M, Sainio J, Lahtinen J. Chemical state quantification of iron and chromium oxides using XPS the effect of the background subtraction method[J]. Surface Science, 2005, 578(1/2/3):108-123.
|
[24] |
Pietrzakr, Wachowska H. The influence of oxidation with HNO3 on the surface composition of high sulphur coals XPS study[J]. Fuel Process. Technol., 2006, 87(11):1021-1029.
|
[25] |
Puziy A M, Poddubnaya O I, Socha R P, et al. XPS and NMR studies of phosphoric acid activated carbons[J]. Carbon, 2008, 46(15):2113-2123.
|
[26] |
何川. 高硫石油焦脱硫技术研究[D]. 长沙:中南大学, 2013. HE C. Study on desulfurization technology of high-sulfur petroleum coke[D]. Changsha:Central South University, 2013.
|
[27] |
Zhang H, Zhao J T, Fang Y T, et al. Catalytic oxidation and stabilized adsorption of elemental mercury from coal-derived fuel gas[J]. Energy and Fuel, 2012, 26:1629-1637.
|
[28] |
Yao Y X, Velpari V, Economy J. Design of sulfur treated activated carbon fibers for gas phase elemental mercury removal[J]. Fuel, 2014, 116:560-565.
|
[29] |
Zhang B, Xu P, Qiu Y, et al. Increasing oxygen functional groups of activated carbon with non-thermal plasma to enhance mercury removal efficiency for flue gases[J]. Chemical Engineering Journal, 2015, 263:1-8.
|
[30] |
Tong Li, XU W Q, QI H, et al. Enhanced effect of O/N groups on the Hg0 removal efficiency over the HNO3-modified activated carbon[J]. Acta Physico-Chimica Sinica, 2015, 31(3):512-518.
|
[31] |
Liu J, Cheney M A, Wu F, et al. Effects of chemical functional groups on elemental mercury adsorption on carbonaceous surfaces[J]. Journal of Hazardous Materials, 2011, 186(1):108-133.
|
[32] |
Liu W, Vidic R D. Impact of flue gas conditions on mercury uptake by sulfur-impregnated activated carbon[J]. Environmental Science and Technology, 2004, 34:154-159.
|
[33] |
SUN P, ZHANG B, ZENG X B, et al. Deep study on effects of activated carbon's oxygen functional groups for elemental mercury adsorption using temperature programmed desorption method[J]. Fuel, 2017, 200:100-106.
|
[34] |
沈彩琴. 活性炭纤维表面吸附汞机理的密度泛函理论研究[D]. 杭州:浙江大学, 2015. SHEN C Q. Density functional theory study on the mechanism of mercury adsorption by activated carbon fiber[D]. Hangzhou:Zhejiang University, 2015.
|
[35] |
SHAO H Z, LIU X W, ZHOU Z J, et al. Elemental mercury removal using a novel KI modified bentonite supported by starch sorbent[J]. Chemical Engineering Journal, 2016, 29:306-316.
|
[36] |
Li Y H, Lee C W, Gullett B K. Importance of activated carbon's oxygen surface functional groups on elemental mercury adsorption[J]. Fuel, 2008, 82:451-457.
|
[37] |
Karatepe N, Orba I, Yavuz R, et al. Sulfur dioxide adsorption by activated carbon having different textural and chemical properties[J]. Fuel, 2008, 87:3207-3215.
|
[38] |
Rumayor M, Fernandez-Miranda N, Lopez-Anton M A, et al. Application of mercury temperature programmed desorption (HgTPD) to ascertain mercury/char interactions[J]. Fuel Processing Technology, 2015, 132:9-14.
|
[39] |
Stavropoulous G G, Samaras P, Sakellaropoulos G P. Effect of activated carbons modification on porosity, surface structure and phenol adsorption[J]. Journal of Hazardous Materials, 2008, 151(2/3):414-421.
|
[40] |
Hall B, Schager P, Lindqvist O. Chemical reactions of mercury in combustion flue gases[J]. Water, Air, Soil Pollut., 1991, 56(1):3-14.
|
[41] |
吕维阳, 刘盛余, 能子礼超, 等. 载硫活性炭脱除天然气中单质汞的研究[J]. 中国环境科学, 2016, 36(2):382-389. LÜ W Y, LIU S Y, NENGZI L C, et al. Remove elemental mercury by sulfur-impregnated activated carbon in natural gas[J]. China Environmental Science, 2016, 36(2):382-389.
|
[42] |
Yang J P, Zhao Y C, Zhang J Y, et al. Removal of elemental mercury from flue gas by recyclable CuCl2 modified magnetospheres catalyst from fly ash (3):Regeneration performance in realistic flue gas atmosphere[J]. Fuel, 2016, 173:1-7.
|