化工学报 ›› 2019, Vol. 70 ›› Issue (8): 3086-3093.DOI: 10.11949/0438-1157.20190335
蔡润夏1(),黄逸群1,程璐1,李东方2,杨海瑞1,吕俊复1,张缦1(
)
收稿日期:
2019-04-02
修回日期:
2019-06-17
出版日期:
2019-08-05
发布日期:
2019-08-05
通讯作者:
张缦
作者简介:
蔡润夏(1991—),男,博士研究生,<email>cairx14@mails.tsinghua.edu.cn</email>
基金资助:
Runxia CAI1(),Yiqun HUANG1,Lu CHENG1,Dongfang LI2,Chung-hwan JEON,Hairui YANG1,Junfu LYU1,Man ZHANG1(
)
Received:
2019-04-02
Revised:
2019-06-17
Online:
2019-08-05
Published:
2019-08-05
Contact:
Man ZHANG
摘要:
石灰石磨耗特性对于循环流化床物料平衡和脱硫效率有重要影响。利用鼓泡床磨耗实验台,系统地研究了不同煅烧与硫化条件下,粒径、温度和SO2浓度对石灰石及其脱硫产物的磨耗速率的影响。实验结果表明,硫化反应会显著降低石灰石的磨耗速率,延迟到达稳定磨耗的时间;当硫化反应达到慢反应区时,脱硫产物磨耗速率趋于稳定。磨耗可以剥离颗粒表层CaSO4,从而提高脱硫剂转化率。相同反应条件下,脱硫产物钙转化率越高,石灰石磨耗速率越低。最后利用现有文献数据分析并验证了石灰石磨耗模型,能够较好地反映不同粒径石灰石的磨耗速率的差异。
中图分类号:
蔡润夏, 黄逸群, 程璐, 李东方, 杨海瑞, 吕俊复, 张缦. 石灰石煅烧与硫化条件下磨耗特性[J]. 化工学报, 2019, 70(8): 3086-3093.
Runxia CAI, Yiqun HUANG, Lu CHENG, Dongfang LI, Chung-hwan JEON, Hairui YANG, Junfu LYU, Man ZHANG. Attrition of limestone during fluidized bed calcination and sulfation[J]. CIESC Journal, 2019, 70(8): 3086-3093.
变量 | 参数 |
---|---|
温度 /℃ | 800,850,900 |
SO2浓度φ(SO2) /% | 0.1, 0.2 |
粒径(d 50/d 32)/μm | 346.2/320.4,609.7/586.4 |
反应条件 | 仅煅烧不硫化,先煅烧后硫化,同时煅烧和硫化 |
表1 石灰石磨耗实验关键变量
Table 1 Experimental parameters of attritions of limestone
变量 | 参数 |
---|---|
温度 /℃ | 800,850,900 |
SO2浓度φ(SO2) /% | 0.1, 0.2 |
粒径(d 50/d 32)/μm | 346.2/320.4,609.7/586.4 |
反应条件 | 仅煅烧不硫化,先煅烧后硫化,同时煅烧和硫化 |
图6 不同时间磨耗产物S元素能谱分析(同时煅烧和硫化,320 μm, φ(SO2)=0.2%)
Fig.6 Energy spectrum analysis (EDS) of sulfur element of attrition particles at different time (simultaneous calcination and sulfation, 320 μm, φ(SO2)=0.2%)
图9 温度对石灰石磨耗速率的影响(同时煅烧和硫化,320 μm,φ(SO2)=0.2%)
Fig.9 Effects of temperature on attrition rate (simultaneous calcination and sulfation, 320 μm, φ(SO2)=0.2%)
图10 粒径对石灰石磨耗速率的影响(同时煅烧和硫化,850℃,φ(SO2)=0.2%)
Fig.10 Effects of particle size on attrition rate (simultaneous calcination and sulfation, 850℃, φ(SO2)=0.2%)
图11 粒径对石灰石脱硫转化率的影响(同时煅烧和硫化,850℃,φ(SO2)=0.2%)
Fig.11 Effects of particle size on sulfation conversion (simultaneous calcination and sulfation, 850℃,φ(SO2)=0.2%)
1 | Anthony E J , Granatstein D L . Sulfation phenomena in fluidized bed combustion systems[J]. Progress in Energy and Combustion Science, 2001, 27(2): 215-236. |
2 | Cai R , Zhang H , Zhang M , et al . Development and application of the design principle of fluidization state specification in CFB coal combustion[J]. Fuel Processing Technology, 2018, 174: 41-52. |
3 | Lupiáñez C , Guedea I , Bolea I , et al . Experimental study of SO2 and NO x emissions in fluidized bed oxy-fuel combustion[J]. Fuel Processing Technology, 2013, 106: 587-594. |
4 | Lyngfelt A , Leckner B . Sulphur capture in circulating fluidized-bed boilers: can the efficiency be predicted?[J]. Chemical Engineering Science, 1999, 54(22): 5573-5584. |
5 | Hu N , Scaroni A W . Fragmentation of calcium-based sorbents under high heating rate, short residence time conditions[J]. Fuel, 1995, 74(3): 374-382. |
6 | Scala F , Salatino P . Dolomite attrition during fluidized-bed calcination and sulfation[J]. Combustion Science and Technology, 2003, 175(12): 2201-2216. |
7 | Di Benedetto A , Salatino P . Modelling attrition of limestone during calcination and sulfation in a fluidized bed reactor[J]. Powder Technology, 1998, 95(2): 119-128. |
8 | Saastamoinen J J , Shimizu T . Attrition-enhanced sulfur capture by limestone particles in fluidized beds[J]. Industrial & Engineering Chemistry Research, 2007, 46(4): 1079-1090. |
9 | 王进伟, 赵新木, 李少华,等 .循环流化床锅炉煤灰成分对其磨耗特性的影响[J]. 化工学报, 2007, 58(3): 739-744. |
Wang J W , Zhao X M , Li S H , et al . Influence of coal ash components on attrition characteristics in circulating fluidized bed[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(3): 739-744. | |
10 | Yang H , Yue G , Xiao X , et al . 1D modeling on the material balance in CFB boiler[J]. Chemical Engineering Science, 2005, 60(20): 5603-5611. |
11 | 崔健,段伦博,赵长遂 .混燃石油焦循环流化床锅炉硫污染物排放特性[J].化工学报, 2018, 69(5): 2158-2165. |
Cui J , Duan L B , Zhao C S . Emission characteristics of sulfurous pollutant from circulating fluidized bed boilers co-firing petroleum coke and coal[J]. CIESC Journal, 2018, 69(5):2158-2165. | |
12 | 杨海瑞, Wirsum M , 吕俊复,等 . CFB锅炉内物料停留时间的模型研究[J]. 热能动力工程, 2003, 18(2): 143-146+214. |
Yang H R , Wirsum M , Lyu J F , et al . Modeling research of residence time of materials in a circulating fluidized bed boiler [J]. Journal of Engineering for Thermal Energy and Power, 2003, 18(2): 143-146+214. | |
13 | Ar I , Balci S . Sulfation reaction between SO2 and limestone: application of deactivation model[J]. Chemical Engineering and Processing: Process Intensification, 2002, 41(2): 179-188. |
14 | Hartman M , Coughlin R W . Reaction of sulfur dioxide with limestone and the grain model[J]. AIChE Journal, 1976, 22(3):490-498. |
15 | Saastamoinen J , Pikkarainen T , Tourunen A , et al . Model of fragmentation of limestone particles during thermal shock and calcination in fluidised beds[J]. Powder Technology, 2008, 187(3): 244-251. |
16 | Saastamoinen J J . Particle-size optimization for SO2 capture by limestone in a circulating fluidized bed[J]. Industrial & Engineering Chemistry Research, 2007, 46(22): 7308-7316. |
17 | Scala F , Salatino P , Boerefijn R , et al . Attrition of sorbents during fluidized bed calcination and sulphation[J]. Powder Technology, 2000, 107(1/2): 153-167. |
18 | Scala F , Cammarota A , Chirone R , et al . Comminution of limestone during batch fluidized‐bed calcination and sulfation[J]. AIChE Journal, 1997, 43(2): 363-373. |
19 | Chirone R , Massimilla L , Salatino P . Comminution of carbons in fluidized bed combustion[J]. Progress in Energy and Combustion Science, 1991, 17(4): 297-326. |
20 | Montagnarn F , Salatino P , Scala F , et al . Sorbent inventory and particle size distribution in air-blown circulating fluidized bed combustors: the influence of particle attrition and fragmentation[C]//Proceedings of the 20th International Conference on Fluidized Bed Combustion. Berlin, Heidelberg: Springer, 2009: 966-971. |
21 | Scala F , Montagnaro F , Salatino P . Sulphation of limestones in a fluidized bed combustor: the relationship between particle attrition and microstructure[J]. The Canadian Journal of Chemical Engineering, 2008, 86(3): 347-355. |
22 | Yao X , Zhang H , Yang H , et al . An experimental study on the primary fragmentation and attrition of limestones in a fluidized bed[J]. Fuel Processing Technology, 2010, 91(9): 1119-1124. |
23 | Wang C , Chen L , Jia L , et al . Simultaneous calcination and sulfation of limestone in CFBB[J]. Applied Energy, 2015, 155: 478-484. |
24 | 王春波, 张斌, 陈亮,等 . 富氧燃烧气氛下石灰石煅烧/硫化特性及模型模拟[J]. 化工学报, 2015, 66(4): 1537-1543. |
Wang C B , Zhang B , Chen L , et al . Characterization and modeling of limestone calcination and sulfation in oxy-fuel combustion atmosphere[J]. CIESC Journal, 2015, 66(4): 1537-1543. | |
25 | Borgwardt R H , Bruce K R , Blake J . An investigation of product-layer diffusivity for calcium oxide sulfation[J]. Industrial & Engineering Chemistry Research, 1987, 26(10): 1993-1998. |
26 | Wang C , Chen L . The effect of steam on simultaneous calcination and sulfation of limestone in CFBB[J]. Fuel, 2016, 175: 164-171. |
27 | Adánez J , Labiano F G , Abánades J C , et al . Methods for characterization of sorbents used in fluidized bed boilers[J]. Fuel, 1994, 73(3): 355-362. |
28 | de las Obras-Loscertales M , de Diego L F , García-Labiano F , et al . Modeling of limestone sulfation for typical oxy-fuel fluidized bed combustion conditions[J]. Energy & Fuels, 2013, 27(4): 2266-2274. |
29 | Mattisson T , Lyngfelt A . The reaction between limestone and SO2 under periodically changing oxidizing and reducing conditions— effect of temperature and limestone type[J]. Thermochimica Acta, 1999, 325(1): 59-67. |
30 | Kamarudin R A , Zakaria M S . The utilization of red gypsum waste for glazes[J]. The Malaysian Journal of Analytical Sciences, 2007, 11(1): 57-64. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[3] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及![]() |
[4] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[5] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[6] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[7] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[8] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[9] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[10] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[11] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[12] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[13] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[14] | 刘春雨, 周桓宇, 马跃, 岳长涛. CaO调质含油污泥干燥特性及数学模型[J]. 化工学报, 2023, 74(7): 3018-3027. |
[15] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 113
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 207
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||