化工学报 ›› 2017, Vol. 68 ›› Issue (4): 1286-1298.DOI: 10.11949/j.issn.0438-1157.20161463
胡平1,2,3, 陈震宇1,2, 王快社1,2, 杨帆1,2, 胡卜亮1,2, 宋瑞1,2, 李秦伟1,2, 曹维成3, 刘东新3, 安耿3
收稿日期:
2016-10-17
修回日期:
2016-12-15
出版日期:
2017-04-05
发布日期:
2017-04-05
通讯作者:
胡平
基金资助:
陕西省创新人才推进计划青年科技新星项目(2017KJXX-35);中国博士后科学基金资助项目(2016M600770);金堆城钼业股份有限公司博士后工作站项目(2016-19)。
HU Ping1,2,3, CHEN Zhenyu1,2, WANG Kuaishe1,2, YANG Fan1,2, HU Boliang1,2, SONG Rui1,2, LI Qinwei1,2, CAO Weicheng3, LIU Dongxin3, AN Geng3
Received:
2016-10-17
Revised:
2016-12-15
Online:
2017-04-05
Published:
2017-04-05
摘要:
二维层状二硫化钼因其独特的结构已经成为二维结构材料领域中新兴的研究热点。它拥有特殊的可调节带隙及优异的光电性能。综述了二维层状二硫化钼的制备方法和优异性能;作为其发展的一个重要方向,对二维层状二硫化钼复合材料的最新研究进行了综述并探讨了复合材料性能提升的机制。提出了对二维层状二硫化钼复合材料相关研究的建议和展望。
中图分类号:
胡平, 陈震宇, 王快社, 杨帆, 胡卜亮, 宋瑞, 李秦伟, 曹维成, 刘东新, 安耿. 二维层状二硫化钼复合材料的研究进展及发展趋势[J]. 化工学报, 2017, 68(4): 1286-1298.
HU Ping, CHEN Zhenyu, WANG Kuaishe, YANG Fan, HU Boliang, SONG Rui, LI Qinwei, CAO Weicheng, LIU Dongxin, AN Geng. Present status and perspective of two-dimensional layered molybdenum disulfide and its composites[J]. CIESC Journal, 2017, 68(4): 1286-1298.
[1] | O'NEILL A, KHAN U, NIRMALRAJ P N, et al. Graphene dispersion and exfoliation in low boiling point solvents[J]. Journal of Physical Chemistry C, 2011, 115(13):5422-5428. |
[2] | LEE C, YAN H, US L E, et al. Anomalous lattice vibrations of single-and few-layer MoS2[J]. Acs Nano, 2010, 4(5):2695-2700. |
[3] | SPLENDIANI A, SUN L, ZHANG Y B, et al. Emerging photoluminescence in monolayer MoS2[J]. Nano Letters, 2010, 10(4):1271-1275. |
[4] | MAK K F, HE K L, SHAN J, et al. Control of valley polarization in monolayer MoS2by optical helicity[J]. Nature Nanotechnology, 2012, 7(8):494-498. |
[5] | ZENG H L, DAI J F, YAO W, et al. Valley polarization in MoS2 monolayers by optical pumping[J]. Nature Nanotechnology, 2012, 7(8):490-493. |
[6] | CAO T, WANG G, HAN W P, et al. Valley-selective circular dichroism of monolayer molybdenum disulphide[J]. Nature Communications, 2012, 3(2):177-180. |
[7] | GOLUB' A S, RUPASOV D P, LENENKO N D, et al. Modification of molybdenum disulfide (2H-MoS2) and synthesis of its intercalation compounds[J]. Russian Journal of Inorganic Chemistry, 2010, 55(8):1166-1171. |
[8] | IVIO J, ALEXANDER D T L, KIS A. Ripples and layers in ultrathin MoS2membranes[J]. Nano Letters, 2011, 11(12):5148-5153. |
[9] | LEE C, LI Q Y, KALB W, et al. Frictional characteristics of atomically thin sheets[J]. Science, 2010, 328(5974):76-80. |
[10] | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669. |
[11] | DEAN C R, YOUNG A F, MERIC I, et al. Boron nitride substrates for high-quality graphene electronics[J]. Nature Nanotechnology, 2010, 5(10):722-726. |
[12] | PACILE D, MEYER J, GIRIT C O, et al. The two-dimensional phase of boron nitride:few-atomic-layer sheets and suspended membranes[J]. Applied Physics Letters, 2008, 92(13):133107. |
[13] | LOTYA M, HERNANDEZ Y, KING P J, et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions[J]. Journal of the American Chemical Society, 2009, 131(10):3611-3620. |
[14] | LIU W W, WANG J N. Direct exfoliation of graphene in organic solvents with addition of NaOH[J]. Chemical Communications, 2011, 47(24):6888-6890. |
[15] | ATACA C, CIRACI S. Dissociation of H2O at the vacancies of single-layer MoS2[J]. Physical Review B, 2012, 85(19):2501-2505. |
[16] | RADISAVLJEVIC B, RADENOVIC A, IVIO J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3):147-150. |
[17] | BÖKER T, SEVERIN R, MÜLLER A, et al. Band structure of MoS2, MoSe2, and a-MoTe2:Angle-resolved photoelectron spectroscopy and ab initio calculations[J]. Physical Review B, 2001, 64(23):235-305. |
[18] | BALENDHRAN S, OU J Z, BHASKARAN M, et al. Atomically thin layers of MoS2 via a two step thermal evaporation-exfoliation method[J]. Nanoscale, 2012, 4(2):461-466. |
[19] | MAK K F, LEE C, HONE J, et al. Atomically thin MoS2:a new direct-gap semiconductor[J]. Physical Review Letters, 2010, 105(13):136805. |
[20] | TYE C T, SMITH K J. Hydrodesulfurization of dibenzothiophene over exfoliated MoS2 catalyst[J]. Catalysis Today, 2006, 116(4):461-468. |
[21] | 汤鹏, 肖坚坚, 郑超, 等. 二维层状二硫化钼及其在光电子器件上的应用[J]. 物理化学学报, 2013, 29(4):667-677. TANG P, XIAO J J, ZHENG C, et al. Graphene-like molybdenum disulfide and its application in optoelectronic devices[J]. Acta Physico-Chimica Sinica, 2013, 29(4):667-677. |
[22] | PERKINS F K, FRIEDMAN A L, COBAS E, et al. Chemical vapor sensing with monolayer MoS2[J]. Nano Letters, 2013, 13(2):668-673. |
[23] | CHEN W, SANTOS E J G, ZHU W G, et al. Tuning the electronic and chemical properties of monolayer MoS2 adsorbed on transition metal substrates[J]. Nano Letters, 2013, 13(2):509-514. |
[24] | DRESSELHAUS M S, CHEN G, TANG M Y, et al. New directions for low-dimensional thermoelectric materials[J]. Advanced Materials, 2007, 19(8):1043-1053. |
[25] | SOON J M, LOH K P. Electrochemical double-layer capacitance of MoS2nanowall films[J]. Electrochemical and Solid-State Letters, 2007, 10(11):A250-A254. |
[26] | TANAKA H, OKUMIYA T, UEDA S K, et al. Preparation of nanosheet by exfoliation of layered iron phenyl phosphate under ultrasonic irradiation[J]. Materials Research Bulletin, 2009, 44(2):328-333. |
[27] | FRINDT R. Single crystals of MoS2 several molecular layers thick[J]. Journal of Applied Physics, 1966, 37(4):1928-1929. |
[28] | GAN X, ZHAO H, QUAN X. Two-dimensional MoS2:a promising building block for biosensors[J]. Biosensors and Bioelectronics, 2017, 89:56-71. |
[29] | JOENSEN P, FRINDT R, MORRISON S R. Single-layer MoS2[J]. Materials Research Bulletin, 1986, 21(4):457-461. |
[30] | 张虹, 岳红彦, 黄硕, 等. 二硫化钼纳米片的制备及在电化学生物传感器中的研究进展.[J]. 材料导报, 2015, (13):58-61.ZENG H, YUE H Y, HUANG S, et al. Preparation of two-dimensional molybdenum disulfide nanosheet and its application in electrochemical biosensors[J]. Materials Review, 2015, (13):58-61. |
[31] | EDA G, YAMAGUCHI H, VOIRY D, et al. Photoluminescence from chemically exfoliated MoS2[J]. Nano Letters, 2011, 11(12):5111-5116. |
[32] | SHI Y M, LI H N, LI L J. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques[J]. Chemical Society Reviews, 2014, 46(9):2744-2756. |
[33] | COLEMAN J N, LOTYA M, O'NEILL A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331(6017):568-571. |
[34] | LEE K, KIM H Y, LOTYA M, et al. Electrical characteristics of molybdenum disulfide flakes produced by liquid exfoliation[J]. Advanced Materials, 2011, 23(36):4178. |
[35] | CASTELLANOS-GOMEZ A, BARKELID M, GOOSSENS A M, et al. Laser-thinning of MoS2:on demand generation of a single-layer semiconductor[J]. Nano Letters, 2012, 12(6):3187-3192. |
[36] | LU X, UTAMA M I B, ZHANG J, et al. Layer-by-layer thinning of MoS2 by thermal annealing[J]. Nanoscale, 2013, 5(19):8904-8908. |
[37] | LIU K K, ZHANG W, LEE Y H, et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates[J]. Nano Letters, 2012, 12(3):1538-1544. |
[38] | HELVEG S, LAURITSEN J V, L GSGAARD E, et al. Atomic-scale structure of single-layer MoS2 nanoclusters[J]. Physical Review Letters, 2000, 84(5):951. |
[39] | SHI Y M, ZHOU W, LU A Y, et al. van der Waals epitaxy of MoS2 layers using graphene as growth templates[J]. Nano Letters, 2012, 12(6):2784-2791. |
[40] | PENG Y, MENG Z, ZHONG C, et al. Hydrothermal synthesis of MoS2 and its pressure-related crystallization[J]. Journal of Solid State Chemistry, 2001, 159(1):170-173. |
[41] | LI Q, NEWBERG J, WALTER E, et al. Polycrystalline molybdenum disulfide (2H-MoS2) nano-and microribbons by electrochemical/chemical synthesis[J]. Nano Letters, 2004, 4(2):277-281. |
[42] | SCRAGG J J, WATJEN J T, EDOFF M, et al. A detrimental reaction at the molybdenum back contact in Cu2ZnSn(S, Se)4 thin-film solar cells[J]. Journal of the American Chemical Society, 2012, 134(47):19330-19333. |
[43] | WANG T M, LIU W M, JIN J L, et al. Preparation and tribological behavior of monolayer MoS2 suspended in water[J]. Tribology, 2003, 23(3):196-199. |
[44] | 张丽丽, 蒲吉斌, 张广安, 等. 二维层状二硫化钼的制备及其真空摩擦学性能研究[J]. 摩擦学学报, 2015, 35(6):746-753.ZHANG L L, PU J B, ZHANG G A, et al. The preparations of graphene-like molybdenum disulfide and research in tribological properties in high vacuum[J]. Tribology, 2015, 35 (6):746-753. |
[45] | RADISAVLJEVIC B, WHITWICK M B, KIS A. Integrated circuits and logic operations based on single-layer MoS2[J]. ACS Nano, 2011, 5(12):9934-9938. |
[46] | YIN Z Y, LI H, LI H, et al. Single-layer MoS2 phototransistors[J]. ACS Nano, 2012, 6(1):74-80. |
[47] | LOPEZ-SANCHEZ O, LEMBKE D, KAYCI M, et al. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nature Nanotechnology, 2013, 8(7):497-501. |
[48] | QI J J, LAN Y W, STIEG A Z, et al. Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics[J]. Nature Communications, 2015, 6:7430. |
[49] | HWANG H, KIM H, CHO J. MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials[J]. Nano Letters, 2011, 11(11):4826-4830. |
[50] | XING W, CHEN Y S, WANG X L, et al. MoS2 quantum dots with a tunable work function for high-performance organic solar cells[J]. ACS Applied Materials & Interfaces, 2016, 8(40):26916-26923. |
[51] | JARAMILLO T F, J RGENSEN K P, BONDE J, et al. Identification of active edge sites for electrochemical H2evolution from MoS2 nanocatalysts[J]. Science, 2007, 317(5834):100-102. |
[52] | XIE J F, ZHANG H, LI S, et al. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution[J]. Advanced Materials, 2013, 25(40):5807-5813. |
[53] | YANG Y P, LI Z M, YANG Y C, et al. Fabrication, microstructure and catalytic degradation performance of MoS2hollow microspheres[J]. Chinese Journal of Inorganic Chemistry, 2012, 28(7):1513-1519. |
[54] | CHAO Y H, ZHU W S, WU X Y, et al. Application of graphene-like layered molybdenum disulfide and its excellent adsorption behavior for doxycycline antibiotic[J]. Chemical Engineering Journal, 2014, 243:60-67. |
[55] | NAJMAEI S, MLAYAH A, ARBOUET A, et al. Plasmonic pumping of excitonic photoluminescence in hybrid MoS2-Au nanostructures[J]. ACS Nano, 2014, 8(12):12682-12689. |
[56] | ZHANG X M, KE R, WANG J J, et al. Facile electrosynthesis and photoelectric conversion of Ag nanodendrites wrapped with MoS2 nanosheets[J]. Electrochimica Acta, 2016, 188:917-926. |
[57] | 贾太轩, 刘自力, 陈胜洲, 等. Ni-MoS2复合材料应用于抽余油的催化加氢脱硫和脱芳烃[J]. 石油学报(石油加工), 2009, 3(3):339-343.JIA T X, LIU Z L, CHEN S Z, et al. Catalytic hydrodesulfurization and hydrodearomatization of extract oil over Ni-MoS2 composite[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2009, 3(3):339-343. |
[58] | LI B B, QIAO S Z, ZHENG X R, et al. Pd coated MoS2 nanoflowers for highly efficient hydrogen evolution reaction under irradiation[J]. Journal of Power Sources, 2015, 284:68-76. |
[59] | WANG L, JIE J, SHAO Z, et al. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors[J]. Advanced Functional Materials, 2015, 25(19):2910-2919. |
[60] | YUWEN L H, XU F, XUE B, et al. General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets and the enhanced catalytic activity of Pd-MoS2 for methanol oxidation[J]. Nanoscale, 2014, 6(11):5762-5769. |
[61] | 卢锡洪, 于明浩, 童叶翔. 一种MoS2/TiO2纳米复合材料及其制备方法:103426648 A[P]. 2013.LU X H, YU M H, TONG Y X. Method of preparation for a kind of MoS2/TiO2 nanocomposite:103426648 A[P]. 2013. |
[62] | MOHAMED MUKTHAR ALI S, SANDHYA K. Highly active TiO2-MoS2 composite for visible light photocatalytic applications[J]. Materials Science Forum, 2015, 830/831:553-556. |
[63] | CHEN Y, SONG B H, TANG X S, et al. Ultrasmall Fe3O4 nanoparticle/MoS2 nanosheet composites with superior performances for lithium ion batteries[J]. Small, 2014, 10(8):1536-1543. |
[64] | 李金柱. MoS2@SnO2异质纳米花的制备与性能研究[D]. 上海:华东师范大学, 2015.LI J Z. Preparation and property research of MoS2@SiO2 hetero-nanoflower[D]. Shanghai:East China Normal University, 2015. |
[65] | YUAN Y J, TU J R, YE Z J, et al. Visible-light-driven hydrogen production from water in a noble-metal-free system catalyzed by zinc porphyrin sensitized MoS2/ZnO[J]. Dyes and Pigments, 2015, 123:285-292. |
[66] | LIANG D W, TIAN Z F, LIU J, et al. MoS2 nanosheets decorated with ultrafine Co3O4nanoparticles for high-performance electrochemical capacitors[J]. Electrochimica Acta, 2015, 182:376-382. |
[67] | CHEN Y J, TIAN G H, SHI Y H, et al. Hierarchical MoS2/Bi2MoO6 composites with synergistic effect for enhanced visible photocatalytic activity[J]. Applied Catalysis B-Environmental, 2015, 164:40-47. |
[68] | XU J, CAO X J. Characterization and mechanism of MoS2/CdS composite photocatalyst used for hydrogen production from water splitting under visible light[J]. Chemical Engineering Journal, 2015, 260:642-648. |
[69] | FRAME F A, OSTERLOH F E. CdSe-MoS2:a quantum size-confined photocatalyst for hydrogen evolution from water under visible light[J]. Journal of Physical Chemistry C, 2010, 114(23):10628-10633. |
[70] | ZHENG D D, ZHANG G G, HOU Y D, et al. Layering MoS2 on soft hollow g-C3N4 nanostructures for photocatalytic hydrogen evolution[J]. Applied Catalysis A-General, 2016, 521:2-8. |
[71] | LI J, LIU E, MA Y, et al. Synthesis of MoS2/g-C3N4nanosheets as 2D heterojunction photocatalysts with enhanced visible light activity[J]. Applied Surface Science, 2016, 364:694-702. |
[72] | DING Y, ZHOU Y F, NIE W Y, et al. MoS2-GO nanocomposites synthesized via a hydrothermal hydrogel method for solar light photocatalytic degradation of methylene blue[J]. Applied Surface Science, 2015, 357:1606-1612. |
[73] | GEE M A, FRINDT R F, JOENSEN P, et al. Inclusion compounds of MoS2[J]. Materials Research Bulletin, 1986, 21(5):543-549. |
[74] | CASTELLANOS-GOMEZ A, POOT M, STEELE G A, et al. Elastic properties of freely suspended MoS2 nanosheets[J]. Advanced Materials, 2012, 24(6):772-775. |
[75] | CASTELLANOS-GOMEZ A, POOT M, STEELE G A, et al. Mechanical properties of freely suspended semiconducting graphene-like layers based on MoS2[J]. Nanoscale Research Letters, 2012, 7(1):1. |
[76] | CHEN D, ZHU H, LIU T X. In situ thermal preparation of polyimide nanocomposite films containing functionalized graphene sheets[J]. ACS Applied Materials & Interfaces, 2010, 2(12):3702-3708. |
[77] | WANG J Y, YANG S Y, HUANG Y L, et al. Preparation and properties of graphene oxide/polyimide composite films with low dielectric constant and ultrahigh strength via in situ polymerization[J]. Journal of Materials Chemistry, 2011, 21(35):13569-13575. |
[78] | LIAO W H, YANG S Y, WANG J Y, et al. Effect of molecular chain length on the mechanical and thermal properties of amine-functionalized graphene oxide/polyimide composite films prepared by in situ polymerization[J]. ACS Applied Materials & Interfaces, 2013, 5(3):869-877. |
[79] | SHI H G, LI Y, GUO T Y. In situ preparation of transparent polyimide nanocomposite with a small load of graphene oxide[J]. Journal of Applied Polymer Science, 2013, 128(5):3163-3169. |
[80] | WANG X, HU Y A, SONG L, et al. In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties[J]. Journal of Materials Chemistry, 2011, 21(12):4222-4227. |
[81] | ZHOU K, LIU J, ZENG W, et al. In situ synthesis, morphology, and fundamental properties of polymer/MoS2 nanocomposites[J]. Composites Science and Technology, 2015, 107:120-128. |
[82] | 郭胜平, 吴伟端. 原位聚合PS/纳米MoS2复合材料的制备及其性能[J]. 玻璃钢/复合材料, 2006, (2):34-36.GUO S P, WU W D. Efftct of preparation parameters on antibacterial performance of gel coat resin[J]. Fiber Reinforced Plastics/Composites, 2006, (2):34-36. |
[83] | MA G F, PENG H, MU J J, et al. In situ intercalative polymerization of pyrrole in graphene analogue of MoS2 as advanced electrode material in supercapacitor[J]. Journal of Power Sources, 2013, 229:72-78. |
[84] | 胡坤宏, 汪瑾, 胡献国. POM/MoS2插层复合材料的制备及其结晶行为研究[C]//2008全国青年摩擦学与表面保护学术会议, 2008.HU K H, WANG J, HU X G. Preparation and crystallization behavior of polyoxymethylene/molybdenum disulfide intercalation nanocomposites[C]//2008 National Youth Tribology and Surface Protection Conference, 2008. |
[85] | 汪瑾, 胡坤宏, 史铁钧, 等. 聚甲醛/二硫化钼插层复合材料的制备及其结晶行为[J]. 中国科学技术大学学报, 2009, 39(1):106-110.WANG J, HU K H, SHI T J, et al. Preparation and crystalliaztion behavior of polyoxymethylene/molybdenum disulfide nanocomposites[J]. Journal of University of Science and Technology of China, 2009, 39(1):106-110. |
[86] | 李为. 聚合物/二硫化钼电极材料的制备及其性能研究[D]. 合肥:合肥工业大学, 2014.LI W. Preparation and properties of polymer/molybdenum disulfide electrode materials[D]. Hefei:Hefei University of Technology, 2014. |
[87] | 汪瑾, 李为, 刘凌子, 等. 一种聚苯胺和二硫化钼插层复合材料的制备方法:103254429A[P]. 2013.WANG J, LI W, LIU L Z, et al. A preparation method of polyaniline and molybdenum disulfide intercalation composite material. 103254429A[P]. 2013. |
[88] | WANG X, KALALI E N, WANG D Y. An in situ polymerization approach for functionalized MoS2/nylon-6 nanocomposites with enhanced mechanical properties and thermal stability[J]. Journal of Materials Chemistry A, 2015, 3(47):24112-24120. |
[89] | 彭学成, 苏建华, 任照玉, 等. 原位聚合不同填料/UHMWPE及其性能研究[J]. 塑料工业, 2006, 34(21):224-226.PENG X C, SU J H, REN Z Y, et al. Study on preparation and properties of UHMWPE composite filled with different fillers by in situ polymerization[J]. China Plastics Industry, 2006, 34(21):224-226. |
[90] | EKSIK O, GAO J, SHOJAEE S A, et al. Epoxy nanocomposites with two-dimensional transition metal dichalcogenide additives[J]. ACS Nano, 2014, 8(5):5282-5289. |
[91] | WANG D, SONG L, ZHOU K Q, et al. Anomalous nano-barrier effects of ultrathin molybdenum disulfide nanosheets for improving the flame retardance of polymer nanocomposites[J]. Journal of Materials Chemistry A, 2015, 3(27):14307-14317. |
[92] | ZHOU K Q, JIANG S H, BAO C L, et al. Preparation of poly(vinyl alcohol) nanocomposites with molybdenum disulfide (MoS2):structural characteristics and markedly enhanced properties[J]. RSC Advances, 2012, 2(31):11695-11703. |
[93] | 何亚飞, 郝立峰, 陆小龙, 等. MoS2纳米片及其增强环氧树脂基复合材料的制备与性能研究[J]. 高分子学报, 2015, (2):197-203.HE Y F, HAO L F, LU X L, et.al. Preparation and properties of MoS2 nanosheets and their epoxy composites[J]. Acta Polymerica Sinica, 2015, (2):197-203. |
[94] | 郭胜平, 吴伟端, 牛牧童. PS/纳米MoS2复合材料的研究[J]. 塑料工业, 2006, 34(5):17-19.GUO S P, WU W D, NIU M T. Study of PS/nanometer MoS2 composites[J]. China Plastics Industry, 2006, 34(5):17-19. |
[95] | 周丽春, 吴伟端, 肖凤英. 聚乙烯/纳米二硫化钼复合材料电性能[J]. 华侨大学学报(自然科学版), 2006, 27(3):259-261.ZHOU L C, WU W D, XIAO F Y. Study on electrical conductivity property of high-density polyethylene filled with nanoscaled molybdenum disulfide[J]. Journal of Huaqiao University (Natural Science), 2006, 27(3):259-261. |
[96] | 梁霄. 氨基化二硫化钼的制备及其在聚合物复合材料中的应用[D]. 合肥:安徽大学, 2016.LIANG X. Preparation of amido molybdenum disulfide and its application in polymer composites[D]. Hefei:Anhui University, 2016. |
[97] | 张雪伟. MoS2-g-C3N4复合材料的合成及光催化制氢性能研究[D]. 长春:吉林大学, 2015.ZHANG X W. Synthesis of MoS2-g-C3N4 composite and its photocatalytic application on hydrogen generation from water splitting[D]. Changchun:Jilin University, 2015 |
[98] | GE L, HAN C, XIAO X, et al. Synthesis and characterization of composite visible light active photocatalysts MoS2-g-C3N4with enhanced hydrogen evolution activity[J]. International Journal of Hydrogen Energy, 2013, 38(17):6960-6969. |
[99] | YE J B, CHEN W X, CHEN Q N, et al. Poly(diallyldimethylammonium chloride)-assisted synthesis of MoS2/graphene composites with enhanced electrochemical performances for reversible lithium storage[J]. Electrochimica Acta, 2016, 190:538-547. |
[100] | CHANG K.CHEN W X. L-Cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries[J]. ACS Nano, 2011, 5(6):4720-4728. |
[101] | YOUN D H, JO C, KIM J Y, et al. Ultrafast synthesis of MoS2 or WS2-reduced graphene oxide composites via hybrid microwave annealing for anode materials of lithium ion batteries[J]. Journal of Power Sources, 2015, 295:228-234. |
[102] | JIANG L F, LIN B H, LI X M, et al. Monolayer MoS2-graphene hybrid aerogels with controllable porosity for lithium-ion batteries with high reversible capacity[J]. ACS Applied Materials & Interfaces, 2016, 8(4):2680-2687. |
[103] | LIU Y, WANG X Z, SONG X D, et al. Interlayer expanded MoS2, enabled by edge effect of graphene nanoribbons for high performance lithium and sodium ion batteries[J]. Carbon, 2016, 109:461-471. |
[104] | YU C, MENG X T, SONG X D, et al. Graphene-mediated highly-dispersed MoS2nanosheets with enhanced triiodide reduction activity for dye-sensitized solar cells[J]. Carbon, 2016, 100:474-483. |
[105] | MAK K F, LEE C, HONE J, et al. Atomically thin MoS2:a new direct-gap semiconductor[J]. Physical Review Letters, 2010, 105(13):136805. |
[106] | CHOU S S, KAEHR B, KIM J, et al. Chemically exfoliated MoS2 as near-infrared photothermal agents[J]. Angewandte Chemie-International Edition, 2013, 52(15):4160-4164. |
[107] | YIN W Y, YAN L, YU J, et al. High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy[J]. ACS Nano, 2014, 8(7):6922-6933. |
[108] | LIU T, WANG C, GU X, et al. Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer[J]. Advanced Materials, 2014, 26(21):3433-3440. |
[109] | HUANG K J, LIU Y J, LIU Y M, et al. Molybdenum disulfide nanoflower-chitosan-Au nanoparticles composites based electrochemical sensing platform for bisphenol A determination[J]. Journal of Hazardous Materials, 2014, 276:207-215. |
[110] | JIANG Y, ZHAO H, ZHU N, et al. A simple assay for direct colorimetric visualization of trinitrotoluene at picomolar levels using gold nanoparticles[J]. Angewandte Chemie, 2008, 120(45):8729-8732. |
[111] | HUANG K J, WANG L, LIU Y J, et al. Synthesis of polyaniline/2-dimensional graphene analog MoS2 composites for high-performance supercapacitor[J]. Electrochimica Acta, 2013, 109:587-594. |
[112] | ZHAO C J, ZHANG Y X, QIAN X Z. MoS2/RGO/Ni3S2nanocomposite in-situ grown on Ni foam substrate and its high electrochemical performance[J]. Electrochimica Acta, 2016, 198:135-143. |
[113] | CHHOWALLA M, SHIN H S, EDA G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nature Chemistry, 2013, 5(4):263-275. |
[1] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[2] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[3] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[4] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[5] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[6] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[7] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[8] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[9] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[10] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[11] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[12] | 崔张宁, 胡紫璇, 吴雷, 周军, 叶干, 刘田田, 张秋利, 宋永辉. 可降解纤维素基材料的耐水性能研究进展[J]. 化工学报, 2023, 74(6): 2296-2307. |
[13] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[14] | 刘远超, 蒋旭浩, 邵钶, 徐一帆, 钟建斌, 李耑. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
[15] | 李振, 张博, 王丽伟. PEG-EG固-固相变材料的制备和性能研究[J]. 化工学报, 2023, 74(6): 2680-2688. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||