[1] |
Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering[J]. Chemical Reviews, 2006, 106(9): 4044-4098.
|
[2] |
Serrano-Ruiz J C, Luque R, Sepulveda-Escribano A. Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing[J]. Chemical Society Reviews, 2011, 40(11): 5266-5281.
|
[3] |
Gallezot P. Conversion of biomass to selected chemical products[J]. Chemical Society Reviews, 2012, 41(4): 1538-1558.
|
[4] |
Kunkes E L, Simonetti D A, West R M, et al. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes[J]. Science, 2008, 322(5900): 417-421.
|
[5] |
沈宜泓, 王帅, 罗琛, 等. 生物质利用新途径: 多元醇催化合成可再生燃料和化学品[J]. 化学进展, 2007, 19(2): 431-436.
|
|
SHEN Y H, WANG S, LUO S, et al. Biomass-derived polyols as new bio-platform molecules for sustainable production of fuels and chemicals[J]. Progress in Chemistry, 2007, 19(2/3): 431-436.
|
[6] |
周日尤, 伍玉碧. 我国山梨醇工业的现状与发展[J]. 现代化工, 2000, 20(9): 49-51.
|
|
Zhou R y, Wu Y b. Current situation and development of sorbitol's production and application in China[J]. Modern Chemical Industry, 2000, 20(9): 49-51.
|
[7] |
Leo I M, Granados M L, Fierro J L G, et al. Sorbitol hydrogenolysis to glycols by supported ruthenium catalysts[J]. Chinese Journal of Catalysis, 2014, 35(5): 614-621.
|
[8] |
Jin X, Shen J, Yan W, et al. Sorbitol hydrogenolysis over hybrid Cu/CaO-Al2O3 catalysts: tunable activity and selectivity with solid base incorporation[J]. ACS Catalysis, 2015, 5(11): 6545-6558.
|
[9] |
Hoffer B W, Crezee E, Devred F, et al. The role of the active phase of Raney-type Ni catalysts in the selective hydrogenation of D-glucose to D-sorbitol[J]. Applied Catalysis A: General, 2003, 253(2): 437-452.
|
[10] |
刘琪英, 廖玉河, 石宁, 等. 生物质多元醇选择性催化氢解制小分子二元醇研究进展[J]. 化工进展, 2013, 32(5): 1035-1042.
|
|
Liu Q Y, Liao Y H, Shi N, et al. A review on small molecular diols production by catalytic hydrogenolysis of biomass derived polyols[J]. Chemical Industry & Engineering Progress, 2013, 32(5):1035-1263.
|
[11] |
Che T M, Westfield N J. Production of propanediols from glycerol: US4642394[P]. 1987-02-10.
|
[12] |
Maris E P, Davis R J. Hydrogenolysis of glycerol over carbon-supported Ru and Pt catalysts[J]. Journal of Catalysis, 2007, 249(2): 328-337.
|
[13] |
Zhang J, Lu F, Yu W, et al. Effects of alkaline additives on the formation of lactic acid in sorbitol hydrogenolysis over Ni/C catalyst[J]. Chinese Journal of Catalysis, 2016, 37(1): 177-183.
|
[14] |
Zhang J, Li J, Wu S B, et al. Advances in the catalytic production and utilization of sorbitol[J]. Industrial & Engineering Chemistry Research, 2013, 52(34): 11799-11815.
|
[15] |
Liu H, Huang Z, Xia C, et al. Selective hydrogenolysis of xylitol to ethylene glycol and propylene glycol over silica dispersed copper catalysts prepared by a precipitation-gel method[J]. ChemCatChem, 2014, 6(10): 2918-2928.
|
[16] |
Zhao L, Zhou J, Chen H, et al. Carbon nanofibers supported Ru catalyst for sorbitol hydrogenolysis to glycols: effect of calcination[J]. Korean Journal of Chemical Engineering, 2010, 27(5): 1412-1418.
|
[17] |
Zhang Q, Jiang T, Li B, et al. Highly selective sorbitol hydrogenolysis to liquid alkanes over Ni/HZSM-5 catalysts modified with pure silica MCM-41[J]. ChemCatChem, 2012, 4(8): 1084-1087.
|
[18] |
Sun J, Liu H. Selective hydrogenolysis of biomass-derived xylitol to ethylene glycol and propylene glycol on Ni/C and basic oxide-promoted Ni/C catalysts[J]. Catalysis Today, 2014, 234(10): 75-82.
|
[19] |
Banu M, Sivasanker S, Sankaranarayanan T M, et al. Hydrogenolysis of sorbitol over Ni and Pt loaded on NaY[J]. Catalysis Communications, 2011, 12(7): 673-677.
|
[20] |
Zhang J, Lu F, Yu W, et al. Selective hydrogenative cleavage of C—C bonds in sorbitol using Ni-Re/C catalyst under nitrogen atmosphere[J]. Catalysis Today, 2014, 234(10):107-112.
|
[21] |
Guo X, Guan J, Li B, et al. Conversion of biomass-derived sorbitol to glycols over carbon-materials supported Ru-based catalysts[J]. Scientific Reports, 2015, 5:16451.
|
[22] |
Ye L, Duan X, Lin H, et al. Improved performance of magnetically recoverable Ce-promoted Ni/Al2O3 catalysts for aqueous-phase hydrogenolysis of sorbitol to glycols[J]. Catalysis Today, 2012, 183(1): 65-71.
|
[23] |
Du W, Zheng L, Li X, et al. Plate-like Ni-Mg-Al layered double hydroxide synthesized via a solvent-free approach and its application in hydrogenolysis of D-sorbitol[J]. Applied Clay Science, 2016, 123: 166-172.
|
[24] |
Du W C, Zheng L P, Shi J J, et al. Production of C2 and C3 polyols from D-sorbitol over hydrotalcite-like compounds mediated bi-functional Ni-Mg-AlOx catalysts[J]. Fuel Processing Technology, 2015, 139: 86-90.
|
[25] |
Weingarten R, Conner W C, Huber G W. Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst[J]. Energy & Environmental Science, 2012, 5(6): 7559-7574.
|
[26] |
Liao Y, Liu Q, Wang T, et al. Zirconium phosphate combined with Ru/C as a highly efficient catalyst for the direct transformation of cellulose to C6 alditols[J]. Green Chemistry, 2014, 16(6): 3305-3312.
|
[27] |
Cao X, Zhang Q, Jiang D, et al. Sorbitol hydrogenolysis to glycols over baisic additive promoted Ni-based catalysts[J]. Chinese Journal of Chemical Physics, 2015, 28(3): 338-344.
|
[28] |
Wang F, Shi R, Liu Z Q, et al. Highly efficient dehydrogenation of primary aliphatic alcohols catalyzed by Cu nanoparticles dispersed on rod-shaped La2O2CO3[J]. ACS Catalysis, 2013, 3(5): 890-894.
|
[29] |
Ruckenstein E, Hu Y H. Interactions between Ni and La2O3 in Ni/La2O3 catalysts prepared using different Ni precursors[J]. Journal of Catalysis, 1996, 161(1): 55-61.
|
[30] |
Sutthiumporn K, Kawi S. Promotional effect of alkaline earth over Ni-La2O3 catalyst for CO2 reforming of CH4: role of surface oxygen species on H2 production and carbon suppression[J]. International Journal of Hydrogen Energy, 2011, 36(22): 14435-14446.
|
[31] |
Shi R, Wang F, Li Y, et al. A highly efficient Cu/La2O3 catalyst for transfer dehydrogenation of primary aliphatic alcohols[J]. Green Chemistry, 2010, 12(1): 108-113.
|
[32] |
Hengne A M, Rode C V. Cu-ZrO2 nanocomposite catalyst for selective hydrogenation of levulinic acid and its ester to γ-valerolactone[J]. Green Chemistry, 2012, 14(4): 1064-1072.
|
[33] |
Gutiérrez-Ortiz J I, De Rivas B, López-Fonseca R, et al. Catalytic purification of waste gases containing VOC mixtures with Ce/Zr solid solutions[J]. Applied Catalysis B: Environmental, 2006, 65(3): 191-200.
|
[34] |
Wolf E E, Alfani F. Catalysts deactivation by coking[J]. Catalysis Reviews Science and Engineering, 1982, 24(3): 329-371.
|
[35] |
Yamaguchi A, Hiyoshi N, Sato O, et al. Sorbitol dehydration in high temperature liquid water[J]. Green Chemistry, 2011, 13(4): 873-881.
|
[36] |
Fleche G, Huchette M. Isosorbide. Preparation, properties and chemistry[J]. Starch‐Stärke, 1986, 38(1): 26-30.
|
[37] |
Szafranek J, Wi?niewski A. Gas-liquid and high-performance liquid chromoatographic analyses of the acid-catalyzed dehydration reaction of xylitol[J]. Journal of Chromatography A, 1980, 187(1): 131-143.
|
[38] |
Yamaguchi A, Muramatsu N, Mimura N, et al. Intramolecular dehydration of biomass-derived sugar alcohols in high-temperature water[J]. Physical Chemistry Chemical Physics, 2017, 19: 2714-2722.
|
[39] |
Tajvidi K, Hausoul P J C, Palkovits R. Hydrogenolysis of cellulose over Cu-based catalysts—analysis of the reaction network[J]. ChemSusChem, 2014, 7(5): 1311-1317.
|