[1] |
OLSEN L C, ADDIS F W, MILLER W. Experimental and theoretical studies of Cu2O solar cells [J]. Solar Cells, 1982, 7 (3): 247-279.
|
[2] |
YUHAS B D, YANG P. Nanowire-based all-oxide solar cells [J]. Office of Scientific & Technical Information Technical Reports, 2009, 131 (10): 3756-3761.
|
[3] |
ZHANG X, SONG J, JIAO J, et al. Preparation and photocatalytic activity of cuprous oxides [J]. Solid State Science, 2010, 12 (7): 1215-1219.
|
[4] |
HARA M, KONDO T, KOMODA M, et al. Cu2O as a photocatalyst for overall water splitting under visible light irradiation [J]. Chemical Communications, 1998, 3 (3): 357-358.
|
[5] |
Yao K X, Yin X M, Wang T H, et al. Synthesis, self-assembly, disassembly, and reassembly of two types of Cu2O nanocrystals unifaceted with {001} or {110} planes [J]. Journal of the American Chemical Society, 2010, 132 (17): 6131-6144.
|
[6] |
DING Y, GE D, YANG L, et al. Controllable synthesis of Cu2O petalody octahedral microcrystals and multi-patterned evolution [J]. Journal of Colloid & Interface Science, 2013, 392 (1): 151-157.
|
[7] |
GOU L, MURPHY C J. Controlling the size of Cu2O nanocubes from 200 to 25 nm [J]. Journal of Materials Chemistry, 2004, 14 (4): 735-738.
|
[8] |
ZHANG D F, ZHANG H, GUO L, et al. Delicate control of crystallographic facet-oriented Cu2O nanocrystals and the correlated adsorption ability [J]. Journal of Materials Chemistry, 2009, 19 (29): 5220-5225.
|
[9] |
LIANG Y, SHANG L, BIAN T, et al. Shape-controlled synthesis of polyhedral 50-facet Cu2O microcrystals with high-index facets [J]. Crystengcomm, 2012, 14 (13): 4431-4436.
|
[10] |
SUN S, ZHOU F, WANG L, et al. Template-free synthesis of well-defined truncated edge polyhedral Cu2O architectures [J]. Crystal Growth & Design, 2010, 10 (2): 541-547.
|
[11] |
SHI J, LI J, HUANG X J, et al. Synthesis and enhanced photocatalytic activity of regularly shaped Cu2O nanowire polyhedra [J]. Nano Research, 2011, 4 (5): 448-459.
|
[12] |
HO J Y, HUANG M H. Synthesis of submicrometer-sized Cu2O crystals with morphological evolution from cubic to hexapod structures and their comparative photocatalytic activity [J]. Journal of Physical Chemistry C, 2009, 113 (32): 14159-14164.
|
[13] |
JIANG D, XING C, LIANG X, et al. Synthesis of cuprous oxide with morphological evolution from truncated octahedral to spherical structures and their size and shape-dependent photocatalytic activities [J]. Journal of Colloid & Interface Science, 2015, 461: 25-31.
|
[14] |
ZHANG Y, DENG B, ZHANG T, et al. Shape effects of Cu2O polyhedral microcrystals on photocatalytic activity [J]. Journal of Physical Chemistry C, 2010, 114 (11): 5073-5079.
|
[15] |
TANG L, LV J, SUN S, et al. Facile hydroxyl-assisted synthesis of morphological Cu2O architectures and their shape-dependent photocatalytic performances [J]. New Journal of Chemistry, 2014, 38 (10): 4656-4660.
|
[16] |
李少伟, 徐建鸿, 骆广生. 过饱和度和混合性能对晶体形貌的影响[C]//中国颗粒学会年会暨海峡两岸颗粒技术研讨会论文集. 2006.
|
|
LI S W, XU J H, LUO G S. Effects of supersaturation and mixing properties on crystal morphology[C]//China Pellet Society Annual Conference and Cross-Strait Pellet Technology Symposium Proceedings. 2006.
|
[17] |
TAGHAVIMOGHADAM S, AXEL KLEEMANN A, GOLBIG K G. Microreaction technology as a novel approach to drug design, process development and reliability [J]. Organic Process Research & Development, 2001, 5 (6): 652-658.
|
[18] |
BOTHE D, STEMICH C, WARNECKE H J. Fluid mixing in a T-shaped micro-mixer [J]. Chemical Engineering Science, 2006, 61 (9): 2950-2958.
|
[19] |
赵玉潮, 应盈, 陈光文, 等. T形微混合器内的混合特性 [J]. 化工学报, 2006, 57 (8): 1884-1890.
|
|
ZHAO Y C, YING Y, CHEN G W, et al. Characterization of micro-mixing in T-shaped micro-mixer [J]. Journal of Chemical Industry and Engineering (China), 2006, 57 (8): 1884-1890.
|
[20] |
陈光文, 赵玉潮, 乐军, 等. 微化工过程中的传递现象 [J]. 化工学报, 2013, 64 (1): 63-75.
|
|
CHEN G W, ZHAO Y C, LE J, et al. Transport phenomenon in micro-chemical engineering [J]. CIESC Journal, 2013, 64 (1): 63-75.
|
[21] |
ANDREUSSI T, GALLETTI C, MAURI R, et al. Flow regimes in T-shaped micro-mixers [J]. Computers & Chemical Engineering, 2015, 76: 150-159.
|
[22] |
HESSEL V, HOFMANN C, LOWE H, et al. Selectivity gains and energy savings for the industrial phenyl boronic acid process using micromixer/tubular reactors [J]. Organic Process Research & Development, 2004, 8 (3): 511-523.
|
[23] |
LIU Z, LU Y, WANG J, et al. Mixing characterization and scaling-up analysis of asymmetrical T-shaped micromixer: experiment and CFD simulation [J]. Chemical Engineering Journal, 2012, 181/182 (1): 597-606.
|
[24] |
骆广生, 王凯, 吕阳成,等. 微尺度下非均相反应的研究进展 [J]. 化工学报, 2013, 64 (1): 165-172.
|
|
LUO G S, WANG K, LÜ Y C, et al. Research and development of micro-scale multiphase reaction processes [J]. CIESC Journal, 2013, 64 (1): 165-172.
|
[25] |
WANG Y, ZHANG X, WANG A, et al. Synthesis of ZnO nanoparticles from microemulsions in a flow type microreactor [J]. Chemical Engineering Journal, 2014, 235 (1): 191-197.
|
[26] |
PALANISAMY B, PAUL B. Continuous flow synthesis of ceria nanoparticles using static T-mixers [J]. Chemical Engineering Science, 2012, 78 (34): 46-52.
|
[27] |
CHANG I, CHEN P C, TSAI M C, et al. Large-scale synthesis of uniform Cu2O nanocubes with tunable sizes by in-situ nucleation [J]. Crystengcomm, 2013, 15 (13): 2363-2366.
|
[28] |
CASTRO C L D, MITCHELL B S. Crystal growth kinetics of nanocrystalline aluminum prepared by mechanical attrition in nylon media [J]. Materials Science & Engineering A, 2005, 396 (1/2): 124-128.
|
[29] |
BAI Y, YANG T, GU Q, et al. Shape control mechanism of cuprous oxide nanoparticles in aqueous colloidal solutions [J]. Powder Technology, 2012, 227 (9): 35-42.
|
[30] |
BORAN F E, BORAN K, MENLIK T. Synthesis and properties of Cu2O quantum particles [J]. Journal of Applied Physics, 2002, 92 (3): 1292-1297.
|