化工学报 ›› 2019, Vol. 70 ›› Issue (1): 388-397.DOI: 10.11949/j.issn.0438-1157.20180501
孟祥坤1(),陈国明1(),郑纯亮1,2,吴翔飞1,朱高庚1
收稿日期:
2018-05-14
修回日期:
2018-06-21
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
陈国明
作者简介:
孟祥坤(1988—),男,博士研究生,<email>wsdy1002@163.com</email>|陈国明(1962—),男,博士,教授,<email>offshore@126.com</email>
基金资助:
Xiangkun MENG1(),Guoming CHEN1(),Chunliang ZHENG1,2,Xiangfei WU1,Gaogeng ZHU1
Received:
2018-05-14
Revised:
2018-06-21
Online:
2019-01-05
Published:
2019-01-05
Contact:
Guoming CHEN
摘要:
针对深水钻井作业安全问题,基于风险熵和复杂网络理论,在考虑风险不确定性的基础上,提出深水钻井井喷事故风险演化量化评估方法。依据深水钻井流程,构建井喷事故场景复杂网络演化模型,判断节点聚类性;针对风险传递的随机性与模糊性,引入风险熵表征两类不确定性;给出风险传递路径最大可能性的表达式,并转化为线性规划问题,通过Dijkstra算法得出事故最短路径。结果表明:深水井喷事故复杂网络的聚类系数为0.132,节点聚集程度较低而演化性较强,具有小世界网络特征;以自然因素类的钻遇浅层气作为初始事件的风险传递路径对井喷事故的影响最大,但所有初始事件的风险经少数几步传递即可导致井喷事故的发生,验证该方法在复杂过程系统定量风险评估方面的可行性。
中图分类号:
孟祥坤, 陈国明, 郑纯亮, 吴翔飞, 朱高庚. 基于风险熵和复杂网络的深水钻井井喷事故风险演化评估[J]. 化工学报, 2019, 70(1): 388-397.
Xiangkun MENG, Guoming CHEN, Chunliang ZHENG, Xiangfei WU, Gaogeng ZHU. Risk evaluation model of deepwater drilling blowout accident based on risk entropy and complex network[J]. CIESC Journal, 2019, 70(1): 388-397.
编号 | 风险因素 | 编号 | 风险因素 | 编号 | 风险因素 |
---|---|---|---|---|---|
v1 | 钻进操作因素 | v21 | 损坏固井质量 | v41 | 溢流进入隔水管 |
v2 | 工艺因素 | v22 | 表层套管下沉 | v42 | 关闭环形BOP |
v3 | 自然因素 | v23 | 地层压力高于井底压力 | v43 | 环形BOP密封失效 |
v4 | 设备因素 | v24 | 井底压力过大 | v44 | 环形BOP机械故障 |
v5 | 固井质量差 | v25 | 压裂地层 | v45 | 液压系统故障 |
v6 | 起钻过快 | v26 | 溢流 | v46 | 环形BOP操作失误 |
v7 | 循环漏失 | v27 | 溢流流体进入井筒环空 | v47 | 环形BOP关闭失败 |
v8 | 抽汲压力过大 | v28 | 早期溢流监测失效 | v48 | 关闭闸板BOP |
v9 | 钻井液密度过低 | v29 | 钻井液流量指示器失效 | v49 | 剪切闸板密封失效 |
v10 | 气侵钻井液 | v30 | 气体流量传感器失效 | v50 | 闸板BOP机械故障 |
v11 | 钻井液密度过大 | v31 | 随钻测压工具失效 | v51 | 闸板BOP操作失误 |
v12 | 钻遇高渗地层 | v32 | 气体含量传感器失效 | v52 | 水合物阻塞BOP组 |
v13 | 钻遇浅层气 | v33 | 控制电路失效 | v53 | 自动关断失效 |
v14 | 钻遇浅层水流 | v34 | 钻井监督显示器故障 | v54 | RCD密封失效 |
v15 | 套管破裂 | v35 | 录井工对泥浆池增量判断失误 | v55 | 分流系统机械故障 |
v16 | 钻杆失效 | v36 | 司钻与录井工协作失误 | v56 | RCD操作失误 |
v17 | 隔水管系统失效 | v37 | 误报警导致司钻判断失误 | v57 | 不压井起下作业装置失效 |
v18 | 泥浆泵失效 | v38 | 未监测到井涌 | v58 | 分流失效 |
v19 | 井口系统失效 | v39 | 井涌判断失误 | v59 | 井喷 |
v20 | 动力故障 | v40 | 井涌后未停钻 | — | — |
表1 深水钻井井喷风险因素
Table 1 Risk factors of deepwater drilling blowout
编号 | 风险因素 | 编号 | 风险因素 | 编号 | 风险因素 |
---|---|---|---|---|---|
v1 | 钻进操作因素 | v21 | 损坏固井质量 | v41 | 溢流进入隔水管 |
v2 | 工艺因素 | v22 | 表层套管下沉 | v42 | 关闭环形BOP |
v3 | 自然因素 | v23 | 地层压力高于井底压力 | v43 | 环形BOP密封失效 |
v4 | 设备因素 | v24 | 井底压力过大 | v44 | 环形BOP机械故障 |
v5 | 固井质量差 | v25 | 压裂地层 | v45 | 液压系统故障 |
v6 | 起钻过快 | v26 | 溢流 | v46 | 环形BOP操作失误 |
v7 | 循环漏失 | v27 | 溢流流体进入井筒环空 | v47 | 环形BOP关闭失败 |
v8 | 抽汲压力过大 | v28 | 早期溢流监测失效 | v48 | 关闭闸板BOP |
v9 | 钻井液密度过低 | v29 | 钻井液流量指示器失效 | v49 | 剪切闸板密封失效 |
v10 | 气侵钻井液 | v30 | 气体流量传感器失效 | v50 | 闸板BOP机械故障 |
v11 | 钻井液密度过大 | v31 | 随钻测压工具失效 | v51 | 闸板BOP操作失误 |
v12 | 钻遇高渗地层 | v32 | 气体含量传感器失效 | v52 | 水合物阻塞BOP组 |
v13 | 钻遇浅层气 | v33 | 控制电路失效 | v53 | 自动关断失效 |
v14 | 钻遇浅层水流 | v34 | 钻井监督显示器故障 | v54 | RCD密封失效 |
v15 | 套管破裂 | v35 | 录井工对泥浆池增量判断失误 | v55 | 分流系统机械故障 |
v16 | 钻杆失效 | v36 | 司钻与录井工协作失误 | v56 | RCD操作失误 |
v17 | 隔水管系统失效 | v37 | 误报警导致司钻判断失误 | v57 | 不压井起下作业装置失效 |
v18 | 泥浆泵失效 | v38 | 未监测到井涌 | v58 | 分流失效 |
v19 | 井口系统失效 | v39 | 井涌判断失误 | v59 | 井喷 |
v20 | 动力故障 | v40 | 井涌后未停钻 | — | — |
语言变量 | 梯形模糊数 | 定性描述 | 概率表征 |
---|---|---|---|
非常低(VL) | (0, 0, 0.1, 0.2) | 基本不可能发生 | (0, 10-6) |
低(L) | (0.1, 0.25, 0.25, 0.4) | 全寿命周期内可能发生 | (10-6, 10-3) |
中等(M) | (0.3, 0.5, 0.5, 0.7) | 全寿命周期内有时发生 | (10-3, 10-2) |
高(H) | (0.6, 0.75, 0.75, 0.9) | 全寿命周期内发生数次 | (10-2, 10-1) |
非常高(VH) | (0.8, 0.9, 1, 1) | 经常会发生 | (10-1, 1) |
表2 模糊语言等级及定性和定量表征
Table 2 Level of fuzzy language and probability
语言变量 | 梯形模糊数 | 定性描述 | 概率表征 |
---|---|---|---|
非常低(VL) | (0, 0, 0.1, 0.2) | 基本不可能发生 | (0, 10-6) |
低(L) | (0.1, 0.25, 0.25, 0.4) | 全寿命周期内可能发生 | (10-6, 10-3) |
中等(M) | (0.3, 0.5, 0.5, 0.7) | 全寿命周期内有时发生 | (10-3, 10-2) |
高(H) | (0.6, 0.75, 0.75, 0.9) | 全寿命周期内发生数次 | (10-2, 10-1) |
非常高(VH) | (0.8, 0.9, 1, 1) | 经常会发生 | (10-1, 1) |
Parameter | Value |
---|---|
Sij(Ei, Ej) | (1, 0.825, 0.825) |
AA(Ei) | (0.913, 0.913, 0.825) |
RA(Ei) | (0.344,0.344, 0.311) |
CC(Ei) | (0.402, 0.369, 0.229) |
RAG | (0.646, 0.784, 0.807, 0.923) |
表3 路径e2专家意见处理过程
Table 3 Computation of expert opinions on path e2
Parameter | Value |
---|---|
Sij(Ei, Ej) | (1, 0.825, 0.825) |
AA(Ei) | (0.913, 0.913, 0.825) |
RA(Ei) | (0.344,0.344, 0.311) |
CC(Ei) | (0.402, 0.369, 0.229) |
RAG | (0.646, 0.784, 0.807, 0.923) |
Edge | Direction | Probability | Entropy | Edge | Direction | Probability | Entropy | Edge | Direction | Probability | Entropy |
---|---|---|---|---|---|---|---|---|---|---|---|
e1 | v1~v5 | 1.00×10-3 | 6.91 | e35 | v21~v5 | 8.02×10-1 | 0.22 | e69 | v42~v44 | 1.00×10-3 | 6.91 |
e2 | v1~v6 | 4.84×10-2 | 3.03 | e36 | v21~v7 | 2.07×10-1 | 1.58 | e70 | v42~v45 | 5.25×10-4 | 7.55 |
e3 | v2~v9 | 5.00×10-2 | 3.00 | e37 | v22~v7 | 8.22×10-2 | 2.50 | e71 | v42~v46 | 4.35×10-3 | 3.14 |
e4 | v2~v10 | 3.00×10-5 | 10.41 | e38 | v23~v26 | 0.99 | 0.01 | e72 | v43~v47 | 0.99 | 0.01 |
e5 | v2~v11 | 5.00×10-2 | 3.00 | e39 | v24~v25 | 8.00×10-1 | 0.22 | e73 | v44~v43 | 2.12×10-2 | 3.85 |
e6 | v3~v12 | 1.50×10-1 | 1.90 | e40 | v25~v23 | 7.35×10-1 | 0.31 | e74 | v44~v45 | 9.02×10-3 | 4.71 |
e7 | v3~v13 | 2.69×10-1 | 1.31 | e41 | v25~v26 | 0.99 | 0.01 | e75 | v44~v47 | 0.99 | 0.01 |
e8 | v3~v14 | 4.00×10-5 | 10.13 | e42 | v26~v27 | 0.99 | 0.01 | e76 | v45~v47 | 0.99 | 0.01 |
e9 | v4~v15 | 6.40×10-4 | 7.35 | e43 | v27~v28 | 2.07×10-1 | 1.58 | e77 | v46~v45 | 1.00×10-3 | 6.91 |
e10 | v4~v16 | 5.00×10-4 | 7.60 | e44 | v27~v29 | 1.10×10-4 | 9.12 | e78 | v46~v47 | 0.99 | 0.01 |
e11 | v4~v17 | 5.10×10-4 | 7.58 | e45 | v27~v30 | 1.10×10-4 | 9.12 | e79 | v47~v48 | 0.99 | 0.01 |
e12 | v4~v18 | 1.60×10-3 | 6.44 | e46 | v27~v31 | 3.00×10-3 | 5.81 | e80 | v48~v49 | 3.55×10-2 | 3.34 |
e13 | v4~v19 | 2.00×10-3 | 6.21 | e47 | v27~v32 | 1.10×10-3 | 6.81 | e81 | v48~v50 | 1.00×10-3 | 6.91 |
e14 | v4~v20 | 6.25×10-4 | 7.38 | e48 | v27~v33 | 1.00×10-4 | 9.21 | e82 | v48~v51 | 6.00×10-4 | 7.42 |
e15 | v5~v7 | 2.70×10-2 | 3.61 | e49 | v27~v34 | 1.10×10-4 | 9.12 | e83 | v48~v52 | 4.22×10-3 | 5.47 |
e16 | v6~v8 | 5.40×10-1 | 0.62 | e50 | v27~v35 | 1.00×10-3 | 6.91 | e84 | v49~v53 | 0.99 | 0.01 |
e17 | v7~v23 | 9.00×10-1 | 0.11 | e51 | v27~v36 | 1.00×10-3 | 6.91 | e85 | v50~v49 | 2.85×10-2 | 3.56 |
e18 | v8~v7 | 8.57×10-2 | 2.46 | e52 | v27~v37 | 1.00×10-3 | 6.91 | e86 | v50~v53 | 0.99 | 0.01 |
e19 | v8~v23 | 9.20×10-1 | 0.08 | e53 | v28~v38 | 0.99 | 0.01 | e87 | v51~v50 | 1.25×10-1 | 2.08 |
e20 | v9~v23 | 9.10×10-1 | 0.09 | e54 | v29~v38 | 0.99 | 0.01 | e88 | v51~v52 | 4.25×10-1 | 0.86 |
e21 | v10~v9 | 6.70×10-1 | 0.40 | e55 | v30~v38 | 0.99 | 0.01 | e89 | v51~v53 | 0.99 | 0.01 |
e22 | v10~v23 | 8.00×10-1 | 0.22 | e56 | v31~v38 | 0.99 | 0.01 | e90 | v52~v53 | 0.99 | 0.01 |
e23 | v11~v24 | 8.90×10-1 | 0.12 | e57 | v32~v38 | 0.99 | 0.01 | e91 | v53~v54 | 1.00×10-3 | 6.91 |
e24 | v12~v25 | 8.20×10-2 | 0.20 | e58 | v33~v38 | 0.99 | 0.01 | e92 | v53~v55 | 3.60×10-3 | 5.63 |
e25 | v13~v26 | 0.99 | 0.01 | e59 | v34~v38 | 0.99 | 0.01 | e93 | v53~v56 | 4.30×10-3 | 5.45 |
e26 | v14~v21 | 1.50×10-1 | 1.90 | e60 | v35~v36 | 8.56×10-2 | 2.46 | e94 | v53~v57 | 4.30×10-3 | 5.45 |
e27 | v14~v22 | 2.00×10-1 | 1.61 | e61 | v35~v39 | 0.99 | 0.01 | e95 | v54~v58 | 0.99 | 0.01 |
e28 | v15~v26 | 0.99 | 0.01 | e62 | v36~v39 | 0.99 | 0.01 | e96 | v55~v54 | 3.85×10-1 | 0.95 |
e29 | v16~v26 | 0.99 | 0.01 | e63 | v37~v39 | 0.99 | 0.01 | e97 | v55~v58 | 0.99 | 0.01 |
e30 | v17~v26 | 0.99 | 0.01 | e64 | v38~v40 | 7.00×10-1 | 0.36 | e98 | v56~v55 | 8.55×10-2 | 2.46 |
e31 | v18~v26 | 0.99 | 0.01 | e65 | v39~v40 | 3.00×10-1 | 1.20 | e99 | v56~v57 | 3.40×10-2 | 3.38 |
e32 | v19~v26 | 0.99 | 0.01 | e66 | v40~v41 | 0.99 | 0.01 | e100 | v56~v58 | 0.99 | 0.01 |
e33 | v20~v18 | 2.15×10-1 | 1.54 | e67 | v41~v42 | 0.99 | 0.01 | e101 | v57~v58 | 0.99 | 0.01 |
e34 | v20~v26 | 0.99 | 0.01 | e68 | v42~v43 | 7.00×10-2 | 2.66 | e102 | v58~v59 | 0.99 | 0.01 |
表4 边权值
Table 4 Weights of edges
Edge | Direction | Probability | Entropy | Edge | Direction | Probability | Entropy | Edge | Direction | Probability | Entropy |
---|---|---|---|---|---|---|---|---|---|---|---|
e1 | v1~v5 | 1.00×10-3 | 6.91 | e35 | v21~v5 | 8.02×10-1 | 0.22 | e69 | v42~v44 | 1.00×10-3 | 6.91 |
e2 | v1~v6 | 4.84×10-2 | 3.03 | e36 | v21~v7 | 2.07×10-1 | 1.58 | e70 | v42~v45 | 5.25×10-4 | 7.55 |
e3 | v2~v9 | 5.00×10-2 | 3.00 | e37 | v22~v7 | 8.22×10-2 | 2.50 | e71 | v42~v46 | 4.35×10-3 | 3.14 |
e4 | v2~v10 | 3.00×10-5 | 10.41 | e38 | v23~v26 | 0.99 | 0.01 | e72 | v43~v47 | 0.99 | 0.01 |
e5 | v2~v11 | 5.00×10-2 | 3.00 | e39 | v24~v25 | 8.00×10-1 | 0.22 | e73 | v44~v43 | 2.12×10-2 | 3.85 |
e6 | v3~v12 | 1.50×10-1 | 1.90 | e40 | v25~v23 | 7.35×10-1 | 0.31 | e74 | v44~v45 | 9.02×10-3 | 4.71 |
e7 | v3~v13 | 2.69×10-1 | 1.31 | e41 | v25~v26 | 0.99 | 0.01 | e75 | v44~v47 | 0.99 | 0.01 |
e8 | v3~v14 | 4.00×10-5 | 10.13 | e42 | v26~v27 | 0.99 | 0.01 | e76 | v45~v47 | 0.99 | 0.01 |
e9 | v4~v15 | 6.40×10-4 | 7.35 | e43 | v27~v28 | 2.07×10-1 | 1.58 | e77 | v46~v45 | 1.00×10-3 | 6.91 |
e10 | v4~v16 | 5.00×10-4 | 7.60 | e44 | v27~v29 | 1.10×10-4 | 9.12 | e78 | v46~v47 | 0.99 | 0.01 |
e11 | v4~v17 | 5.10×10-4 | 7.58 | e45 | v27~v30 | 1.10×10-4 | 9.12 | e79 | v47~v48 | 0.99 | 0.01 |
e12 | v4~v18 | 1.60×10-3 | 6.44 | e46 | v27~v31 | 3.00×10-3 | 5.81 | e80 | v48~v49 | 3.55×10-2 | 3.34 |
e13 | v4~v19 | 2.00×10-3 | 6.21 | e47 | v27~v32 | 1.10×10-3 | 6.81 | e81 | v48~v50 | 1.00×10-3 | 6.91 |
e14 | v4~v20 | 6.25×10-4 | 7.38 | e48 | v27~v33 | 1.00×10-4 | 9.21 | e82 | v48~v51 | 6.00×10-4 | 7.42 |
e15 | v5~v7 | 2.70×10-2 | 3.61 | e49 | v27~v34 | 1.10×10-4 | 9.12 | e83 | v48~v52 | 4.22×10-3 | 5.47 |
e16 | v6~v8 | 5.40×10-1 | 0.62 | e50 | v27~v35 | 1.00×10-3 | 6.91 | e84 | v49~v53 | 0.99 | 0.01 |
e17 | v7~v23 | 9.00×10-1 | 0.11 | e51 | v27~v36 | 1.00×10-3 | 6.91 | e85 | v50~v49 | 2.85×10-2 | 3.56 |
e18 | v8~v7 | 8.57×10-2 | 2.46 | e52 | v27~v37 | 1.00×10-3 | 6.91 | e86 | v50~v53 | 0.99 | 0.01 |
e19 | v8~v23 | 9.20×10-1 | 0.08 | e53 | v28~v38 | 0.99 | 0.01 | e87 | v51~v50 | 1.25×10-1 | 2.08 |
e20 | v9~v23 | 9.10×10-1 | 0.09 | e54 | v29~v38 | 0.99 | 0.01 | e88 | v51~v52 | 4.25×10-1 | 0.86 |
e21 | v10~v9 | 6.70×10-1 | 0.40 | e55 | v30~v38 | 0.99 | 0.01 | e89 | v51~v53 | 0.99 | 0.01 |
e22 | v10~v23 | 8.00×10-1 | 0.22 | e56 | v31~v38 | 0.99 | 0.01 | e90 | v52~v53 | 0.99 | 0.01 |
e23 | v11~v24 | 8.90×10-1 | 0.12 | e57 | v32~v38 | 0.99 | 0.01 | e91 | v53~v54 | 1.00×10-3 | 6.91 |
e24 | v12~v25 | 8.20×10-2 | 0.20 | e58 | v33~v38 | 0.99 | 0.01 | e92 | v53~v55 | 3.60×10-3 | 5.63 |
e25 | v13~v26 | 0.99 | 0.01 | e59 | v34~v38 | 0.99 | 0.01 | e93 | v53~v56 | 4.30×10-3 | 5.45 |
e26 | v14~v21 | 1.50×10-1 | 1.90 | e60 | v35~v36 | 8.56×10-2 | 2.46 | e94 | v53~v57 | 4.30×10-3 | 5.45 |
e27 | v14~v22 | 2.00×10-1 | 1.61 | e61 | v35~v39 | 0.99 | 0.01 | e95 | v54~v58 | 0.99 | 0.01 |
e28 | v15~v26 | 0.99 | 0.01 | e62 | v36~v39 | 0.99 | 0.01 | e96 | v55~v54 | 3.85×10-1 | 0.95 |
e29 | v16~v26 | 0.99 | 0.01 | e63 | v37~v39 | 0.99 | 0.01 | e97 | v55~v58 | 0.99 | 0.01 |
e30 | v17~v26 | 0.99 | 0.01 | e64 | v38~v40 | 7.00×10-1 | 0.36 | e98 | v56~v55 | 8.55×10-2 | 2.46 |
e31 | v18~v26 | 0.99 | 0.01 | e65 | v39~v40 | 3.00×10-1 | 1.20 | e99 | v56~v57 | 3.40×10-2 | 3.38 |
e32 | v19~v26 | 0.99 | 0.01 | e66 | v40~v41 | 0.99 | 0.01 | e100 | v56~v58 | 0.99 | 0.01 |
e33 | v20~v18 | 2.15×10-1 | 1.54 | e67 | v41~v42 | 0.99 | 0.01 | e101 | v57~v58 | 0.99 | 0.01 |
e34 | v20~v26 | 0.99 | 0.01 | e68 | v42~v43 | 7.00×10-2 | 2.66 | e102 | v58~v59 | 0.99 | 0.01 |
Initial event | Shortest path | Risk entropy | Probability |
---|---|---|---|
v1 | v1→v6→v8→v23→v28→v43→v49→v56→v59 | 17.11 | 3.32×10-8 |
v2 | v2→v9→v23→v28→v43→v49→v56→v59 | 16.58 | 6.30×10-8 |
v3 | v3→v13→v28→v38→v43→v49→v56→v59 | 14.80 | 3.73×10-7 |
v4 | v4→v19→v28→v38→v43→v49→v56→v59 | 19.70 | 2.78×10-9 |
表5 各初始事件类别的最短路径
Initial event | Shortest path | Risk entropy | Probability |
---|---|---|---|
v1 | v1→v6→v8→v23→v28→v43→v49→v56→v59 | 17.11 | 3.32×10-8 |
v2 | v2→v9→v23→v28→v43→v49→v56→v59 | 16.58 | 6.30×10-8 |
v3 | v3→v13→v28→v38→v43→v49→v56→v59 | 14.80 | 3.73×10-7 |
v4 | v4→v19→v28→v38→v43→v49→v56→v59 | 19.70 | 2.78×10-9 |
1 | TamimN, LaboureurD M, MentzerR A, et al. A framework for developing leading indicators for offshore drillwell blowout incidents[J]. Process Safety & Environmental Protection, 2017, 106: 256-262. |
2 | 孙宝江, 王志远, 公培斌, 等. 深水井控的七组分多相流动模型[J]. 石油学报, 2011, 32(6): 1042-1049. |
SunB J, WangZ Y, GongP B, et al. Application of a seven-component multiphase flow model to deepwater well control[J]. Acta Petrolei Sinica, 2011, 32(6): 1042-1049. | |
3 | 褚道余. 深水井控工艺技术探讨[J]. 石油钻探技术, 2012, 40(1): 52-57. |
ChuD Y. Well control technology in deepwater well[J]. Petroleum Drilling Techniques, 2012, 40(1): 52-57. | |
4 | BhandariJ, AbbassiR, GaraniyaV, et al. Risk analysis of deepwater drilling operations using Bayesian network[J]. Journal of Loss Prevention in the Process Industries, 2015, 38: 11-23. |
5 | PraneshV, PalanichamyK, SaidatO, et al. Lack of dynamic leadership skills and human failure contribution analysis to manage risk in deep water horizon oil platform[J]. Safety Science, 2017, 92: 85-93. |
6 | SkogdalenJ E, UtneI B, VinnemJ E. Developing safety indicators for preventing offshore oil and gas deepwater drilling blowouts[J]. Safety Science, 2011, 49(8): 1187-1199. |
7 | LiW, ZhangL, LiangW. An accident causation analysis and taxonomy (ACAT) model of complex industrial system from both system safety and control theory perspectives[J]. Safety Science, 2017, 92: 94-103. |
8 | MengX, ChenG, ShiJ, et al. STAMP-based analysis of deepwater well control safety[J]. Journal of Loss Prevention in the Process Industries, 2018, 55(5): 41-52. |
9 | XueL, FanJ, RausandM, et al. A safety barrier-based accident model for offshore drilling blowouts[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(1): 164-171. |
10 | VenkatasubramanianV. Systemic failures: challenges and opportunities in risk management in complex systems[J]. AIChE Journal, 2011, 57(1): 2-9. |
11 | DengY, LiQ, LuY. A research on subway physical vulnerability based on network theory and FMECA[J]. Safety Science, 2015, 80: 127-134. |
12 | 刘文颖, 王佳明, 谢昶, 等. 基于脆性风险熵的复杂电网连锁故障脆性源辨识模型[J]. 中国电机工程学报, 2012, 32(31): 142-149. |
LiuW Y, WangJ M, XieC, et al. Brittleness source identification model for cascading failure of complex power grid based on brittle risk entropy[J]. Proceedings of the CSEE, 2012, 32(31): 142-149. | |
13 | 蔡晔, 曹一家, 谭玉东, 等. 基于标准化结构熵的电网结构对连锁故障的影响[J]. 电工技术学报, 2015, 30(3): 36-43. |
CaiY, CaoY J, TanY D, et al. Influences of power grid structure on cascading failure based on standard structure entropy[J]. Transactions of China Electrotechnical Society, 2015, 30(3): 36-43. | |
14 | 苟竞, 刘俊勇, 刘友波, 等. 基于能量熵测度的电力系统连锁故障风险辨识[J]. 电网技术, 2013, 37(10): 2754-2761. |
GouJ, LiuJ Y, LiuY B, et al. Energy entropy measure based risk identification of power system cascading failures[J]. Power System Technology, 2013, 37(10): 2754-2761. | |
15 | 孟祥坤, 陈国明, 朱红卫. 海底管道泄漏风险演化复杂网络分析[J]. 中国安全生产科学技术, 2017, 13(4): 26-31. |
MengX K, ChenG M, ZhuH W. Complex network analysis on risk evolution of submarine pipeline leakage[J]. Journal of Safety Science and Technology, 2017, 13(4): 26-31. | |
16 | 陈长坤, 纪道溪. 基于复杂网络的台风灾害演化系统风险分析与控制研究[J]. 灾害学, 2012, 27(1): 1-4. |
ChenC K, JiD X. Risk analysis and control for the evolution disaster system of typhoon based on complex network[J]. Journal of Catastrophology, 2012, 27(1): 1-4. | |
17 | 付建民, 李成美, 东静波, 等. 数据不确定条件下安全仪表系统SIL等级验证方法研究[J]. 中国石油大学学报(自然科学版), 2017, 41(3): 129-135. |
FuJ M, LiC M, DongJ B, et al. Study on method of SIL verification of safety instrumented systems under data uncertainty[J]. Journal of China University of Petroleum (Edition of Natural Science), 2017, 41(3): 129-135. | |
18 | 魏心泉, 王坚. 基于熵的火灾场景介观人群疏散模型[J]. 系统工程理论与实践, 2015, 35(10): 2473-2483. |
WeiX Q, WangJ. A mesoscopic evacuation model based on multi-agent and entropy with leading behavior under fire conditions[J]. System Engineering- Theory & Practice, 2015, 35(10): 2473-2483. | |
19 | 胡瑾秋, 郭家洁. 基于尺度效应的过程安全事故概率估计[J]. 化工学报, 2017, 68(12): 4848-4856. |
HuJ Q, GuoJ J. Accident probability estimation of process safety based on scale effect[J]. CIESC Journal, 2017, 68(12): 4848-4856. | |
20 | 胡瑾秋, 张来斌, 王安琪. 炼化装置故障链式效应定量安全预警方法[J]. 化工学报, 2016, 67(7): 3091-3100. |
HuJ Q, ZhangL B, WangA Q. Quantitative safety early warning method of fault propagation for petrochemical plants[J]. CIESC Journal, 2016, 67(7): 3091-3100. | |
21 | 胡瑞敏, 吕海涛, 陈军. 基于风险熵和Neyman-Pearson准则的安防网络风险评估研究[J]. 自动化学报, 2014, 40(12): 2737-2746. |
HuR M, LüH T, ChenJ. Risk evaluation model of security and protection network based on risk entropy and Neyman- Pearson criterion[J]. Acta Automatica Sinica, 2014, 40(12): 2737-2746. | |
22 | LevesonN. A new accident model for engineering safer systems[J]. Safety Science, 2004, 42(4): 237-270. |
23 | LevesonN G, StephanopoulosG. A system-theoretic, control-inspired view and approach to process safety[J]. AIChE Journal, 2014, 60(1): 2-14. |
24 | AbimbolaM, KhanF, KhakzadN, et al. Safety and risk analysis of managed pressure drilling operation using Bayesian network[J]. Safety Science, 2015, 76(1): 133-144. |
25 | AbimbolaM, KhanF, KhakzadN. Dynamic safety risk analysis of offshore drilling[J]. Journal of Loss Prevention in the Process Industries, 2014, 30(3): 74-85. |
26 | KhakzadN, KhanF, AmyotteP. Quantitative risk analysis of offshore drilling operations: a Bayesian approach[J]. Safety Science, 2013, 57: 108-117. |
27 | ZareiE, AzadehA, KharzadN, et al. Dynamic safety assessment of natural gas stations using Bayesian network[J]. Journal of Hazardous Materials, 2017, 321: 830-840. |
28 | 董海波, 顾学康. 基于模糊故障树方法的钻井平台井喷概率计算[J]. 中国造船, 2013, 54(1): 155-165. |
DongH B, GuX K. Probability calculation of blowout of drilling platform based on fuzzy fault tree method[J]. Shipbuilding of China, 2013, 54(1): 155-165. | |
29 | OnisawaT. An approach to human reliability in man-machine systems using error possibility[J]. Fuzzy Sets and Systems, 1988, 27(2): 87-103. |
30 | LavasaniS M, ZendeganiA, CelikM. An extension to fuzzy fault tree analysis (FFTA) application in petrochemical process industry[J]. Process Safety & Environmental Protection, 2015, 93(2): 75-88. |
[1] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[2] | 李珍宝, 李超, 王虎, 王绍瑞, 黎泉. MPP抑制铝镁合金粉尘爆炸微观机理研究[J]. 化工学报, 2023, 74(8): 3608-3614. |
[3] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[4] | 李贵贤, 曹阿波, 孟文亮, 王东亮, 杨勇, 周怀荣. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009. |
[5] | 刘晓洋, 喻健良, 侯玉洁, 闫兴清, 张振华, 吕先舒. 螺旋微通道对掺氢甲烷爆轰传播的影响[J]. 化工学报, 2023, 74(7): 3139-3148. |
[6] | 王光, 单发顺, 钱禹丞, 焦建芳. 基于集成学习传递熵的化工过程微小故障检测方法[J]. 化工学报, 2023, 74(7): 2967-2978. |
[7] | 邵远哲, 赵忠盖, 刘飞. 基于共同趋势模型的非平稳过程质量相关故障检测方法[J]. 化工学报, 2023, 74(6): 2522-2537. |
[8] | 肖忠良, 尹碧露, 宋刘斌, 匡尹杰, 赵亭亭, 刘成, 袁荣耀. 废旧锂离子电池回收工艺研究进展及其安全风险分析[J]. 化工学报, 2023, 74(4): 1446-1456. |
[9] | 贠程, 王倩琳, 陈锋, 张鑫, 窦站, 颜廷俊. 基于社团结构的化工过程风险演化路径深度挖掘[J]. 化工学报, 2023, 74(4): 1639-1650. |
[10] | 武子超, 汪志雷, 李荣业, 李可昕, 华敏, 潘旭海, 王三明, 蒋军成. 点火方式对欠膨胀氢气射流爆炸超压影响规律研究[J]. 化工学报, 2023, 74(3): 1409-1418. |
[11] | 王子宗, 索寒生, 赵学良. 数字孪生智能乙烯工厂研究与构建[J]. 化工学报, 2023, 74(3): 1175-1186. |
[12] | 杜江龙, 杨雯棋, 黄凯, 练成, 刘洪来. 复合相变材料/空冷复合式锂离子电池模块散热性能[J]. 化工学报, 2023, 74(2): 674-689. |
[13] | 王雅琳, 潘雨晴, 刘晨亮. 基于GSA-LSTM动态结构特征提取的间歇过程监测方法[J]. 化工学报, 2022, 73(9): 3994-4002. |
[14] | 杨克, 王辰升, 纪虹, 郑凯, 邢志祥, 毕海普, 蒋军成. 聚多巴胺包覆混合粉体抑制甲烷爆炸的实验研究[J]. 化工学报, 2022, 73(9): 4245-4254. |
[15] | 廖珊珊, 张少刚, 陶骏骏, 刘家豪, 汪金辉. 竖直射流火撞击障碍管道数值模拟分析[J]. 化工学报, 2022, 73(9): 4226-4234. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||