1 |
EtchellsJ C. Why reactions run away[J]. Organic Process Research & Development, 1997, 1(6): 435-437.
|
2 |
BarbasR, BotijaM, CampsH, et al. Safety evaluation of an unexpected incident with a nitro compound[J]. Organic Process Research & Development, 2007, 11(6): 1131-1134.
|
3 |
ShimizeS, OsatoH, ImamuraY, et al. Safety evaluation of sodium borohydride in dimethylacetamide[J]. Organic Process Research & Development, 2010, 14(6): 1518-1520.
|
4 |
StoesselF. Thermal Safety of Chemical Process: Risk Assessment and Process Design[M]. Weinheim: Wiley-VCH, 2008: 55-56.
|
5 |
彭敏君, 路贵斌, 陈网桦, 等. 苯胺溶剂中偶氮二异丁腈热分解特性及动力学[J]. 物理化学学报, 2013, 29(10): 2095-2100.
|
|
PengM J, LuG B, ChenW H, et al. Thermal decomposition characteristic and kinetics of AIBN in aniline solvent[J]. Acta Physico-Chimica Sinica, 2013, 29(10): 2095-2100.
|
6 |
周奕杉, 陈利平, 陈网桦, 等. 甲苯一段硝化产物TD24的获取[J]. 化工学报, 2014, 65(11): 4383-4391.
|
|
ZhouY S, ChenL P, ChenW H, et al. TD24 determination for mono-nitration products of toluene[J]. CIESC Journal, 2014, 65(11): 4383-4391.
|
7 |
SemenoffN. Zur theorie des verbrennung sprozesses[J]. Zeitschrift für Physik, 1928, 48(7): 571-582.
|
8 |
TownsendD I, TouJ C. Thermal hazard evaluation by an accelerating rate calorimeter[J]. Thermochimica Acta, 1980, 37(1): 1-30.
|
9 |
TouJ C, WhitingL F. The thermokinetic performance of an accelerating rate calorimeter[J]. Thermochimica Acta, 1981, 48(1): 21-42.
|
10 |
Frank-KamenetskiiD A, SemenoffN, WilhelmR H. Diffusion and Heat Exchange in Chemical Kinetics[M]. Princeton: Princeton University Press, 1955: 145-200.
|
11 |
KossoyA, SinghJ, KoludarovaE Y. Mathematical methods for application of experimental adiabatic data – an update and extension[J]. Journal of Loss Prevention in the Process Industries, 2015, 33: 88-100.
|
12 |
GuoZ C, ChenL P, ChenW H. Estimation of kinetic parameters from adiabatic calorimetric data by a hybrid particle swarm optimization method[J]. Chemical Engineering Research & Design, 2017, 122: 273-279.
|
13 |
DormandJ R, PrinceP J. A family of embedded Runge-Kutta formulae[J]. J. Computational & Applied Mathematics, 1980, 6(1): 19-26.
|
14 |
郭菊喜. 四阶Runge-Kutta格式及五阶Runge-Kutta格式的证明[J]. 乐山师范学院学报, 2016, 31(4): 8-15.
|
|
Guo J X, The proof of fourth-order Runge-Kutta and fifth-order Runge-Kutta method[J]. Journal of Leshan Normal University, 2016, 31(4): 8-15.
|
15 |
RoduitB, HartmannM, FollyP, et al. Prediction of thermal stability of materials by modified kinetic and model selection approaches based on limited amount of experimental points[J]. Thermochimica Acta, 2014, 579(5): 31-39.
|
16 |
KimuraA, OtsukaT. Performance evaluation of differential accelerating rate calorimeter for the thermal runaway reaction of di-tert-butyl peroxide[J]. Journal of Thermal Analysis & Calorimetry, 2013, 113(3): 1585-1591.
|
17 |
AndY I, SurianarayananM. Comprehensive kinetic model for adiabatic decomposition of di-tert-butyl peroxide using batchCAD[J]. Industrial & Engineering Chemistry Research, 2003, 42(13): 2987-2995.
|
18 |
HoT C, DuhY S, ChenJ R. Case studies of incidents in runaway reactions and emergency relief[J]. Process Safety Progress, 1998, 17(4): 259-262.
|
19 |
WuK W, HouH Y, ShuC M. Thermal phenomena studies for dicumyl peroxide at various concentrations by DSC[J]. Journal of Thermal Analysis & Calorimetry, 2006, 83(1): 41-44.
|
20 |
DuhY S, KaoC S, LeeC, et al. Runaway hazard assessment of cumene hydroperoxide from the cumene oxidation process[J]. Process Safety & Environmental Protection, 1997, 75(2): 73-80.
|
21 |
WuS H, WangY W, WuT C, et al. Evaluation of thermal hazards for dicumyl peroxide by DSC and VSP2[J]. Journal of Thermal Analysis & Calorimetry, 2008, 93(1): 189-194.
|
22 |
ChenK Y, WuS H, WangY W, et al. Runaway reaction and thermal hazards simulation of cumene hydroperoxide by DSC[J]. Journal of Loss Prevention in the Process Industries, 2008, 21(1): 101-109.
|
23 |
ChenJ R, ChengS Y, YuanM H, et al. Hierarchical kinetic simulation for autocatalytic decomposition of cumene hydroperoxide at low temperatures[J]. Journal of Thermal Analysis & Calorimetry, 2009, 96(3): 751-758.
|
24 |
黄艳军, 谢传欣, 曹居正, 等. 过氧化氢异丙苯热稳定性与热安全性研究[J]. 中国安全科学学报, 2011, 21(6): 116-122.
|
|
HuangY J, XieC X, CaoJ Z, et al. Study on thermal stability and thermal safety of cumene hydroperoxide[J]. China Safety Science Journal, 2011, 21(6): 116-122.
|
25 |
DuhY S, KaoC S, HwangH H, et al. Thermal decomposition kinetics of cumene hydroperoxide[J]. Process Safety & Environmental Protection, 1998, 76(4): 271-276.
|
26 |
WilberforceJ K. Comparison of methods of determination of adiabatic times to maximum rate of exothermic reactions[J]. Journal of Thermal Analysis, 1982, 25(2): 593-596.
|
27 |
KossoyA, MisharevP, BelochvostovV. Peculiarities of calorimetric data processing for kinetics evaluation in reaction hazard assessment[C]// Calorimetry Conference. 1998.
|
28 |
GaoH, ChenL, ChenW, et al. Thermal stability evaluation of β-artemether by DSC and ARC[J]. Thermochimica Acta, 2013, 569: 134-138.
|
29 |
胡荣祖, 史启祯. 热分析动力学[M]. 北京: 科学出版社, 2001: 236-257.
|
|
HuR Z, ShiQ Z. Thermal Analysis Kinetics[M]. Beijing: Science Press, 2001: 236-257.
|
30 |
杨庭, 陈利平, 陈网桦, 等. 分解反应自催化性质快速鉴别的实验方法[J]. 物理化学学报, 2014, 30(7): 1215-1222.
|
|
YangT, ChenL P, ChenW H, et al. Experimental method on rapid identification of autocatalysis in decomposition reactions[J]. Acta Physico-Chimica Sinica, 2014, 30(7): 1215-1222.
|
31 |
陈网桦, 陈利平, 杨庭, 等. 自催化鉴别方法在物质热稳定性分析中的应用[C]// 中国化学会学术年会, 2014.
|
|
ChenW H, ChenL P, YangT, et al. Application of identified method for autocatalytic decomposition on thermal stability of material[C]// Chinese Chemical Society, 2014.
|