化工学报 ›› 2019, Vol. 70 ›› Issue (12): 4730-4740.DOI: 10.11949/0438-1157.20190531
收稿日期:
2019-05-19
修回日期:
2019-08-08
出版日期:
2019-12-05
发布日期:
2019-12-05
通讯作者:
崔国民
作者简介:
韩正恒(1995—),男,硕士研究生,基金资助:
Zhengheng HAN(),Guomin CUI(),Yuan XIAO
Received:
2019-05-19
Revised:
2019-08-08
Online:
2019-12-05
Published:
2019-12-05
Contact:
Guomin CUI
摘要:
利用强制进化随机游走算法优化换热网络至后期时,个体网络结构基本定型,很难再被破坏或改变,潜在进化能力难以发挥作用,无法求解出更优结构。基于此,探究个体进化过程中的结构变化特性,分析后期结构优化的重心所在,提出结构融合策略,将两个个体结构融合到一起,形成新个体,放大原个体结构进化潜力。对新个体进行优化,其结构中所有换热单元互相竞争,引导结构进化潜力发挥作用,保留有益于结构进化的换热单元,淘汰阻碍结构进化的换热单元,生成部分新换热单元,促进个体进化形成更优换热网络结构。最后应用两个算例验证该策略的有效性,取得了可观的优化效果。
中图分类号:
韩正恒, 崔国民, 肖媛. 采用结构融合策略优化换热网络[J]. 化工学报, 2019, 70(12): 4730-4740.
Zhengheng HAN, Guomin CUI, Yuan XIAO. Optimization of heat exchanger network by structure-fusion strategy[J]. CIESC Journal, 2019, 70(12): 4730-4740.
Stream | T in/℃ | T out/℃ | GCp/ (kW·℃-1) | h/ (kW·m-2·℃-1) |
---|---|---|---|---|
H1 | 576 | 437 | 23.1 | 0.06 |
H2 | 599 | 399 | 15.22 | 0.06 |
H3 | 530 | 382 | 15.15 | 0.06 |
H4 | 449 | 237 | 14.76 | 0.06 |
H5 | 368 | 177 | 10.7 | 0.06 |
H6 | 121 | 114 | 149.6 | 1 |
H7 | 202 | 185 | 258.2 | 1 |
H8 | 185 | 113 | 8.38 | 1 |
H9 | 140 | 120 | 59.89 | 1 |
H10 | 69 | 66 | 165.79 | 1 |
H11 | 120 | 68 | 8.74 | 1 |
H12 | 67 | 35 | 7.62 | 1 |
H13 | 1034.5 | 576 | 21.3 | 0.06 |
C1 | 123 | 343 | 10.61 | 0.06 |
C2 | 20 | 156 | 6.65 | 1.2 |
C3 | 156 | 157 | 3291 | 2 |
C4 | 20 | 182 | 26.63 | 1.2 |
C5 | 182 | 318 | 31.19 | 1.2 |
C6 | 318 | 320 | 4011.83 | 2 |
C7 | 322 | 923.78 | 17.6 | 0.06 |
HU | 927 | 927 | — | 5 |
CU | 9 | 17 | — | 1 |
表1 算例20SP1流体参数
Table 1 Parameter of streams for case 20SP1
Stream | T in/℃ | T out/℃ | GCp/ (kW·℃-1) | h/ (kW·m-2·℃-1) |
---|---|---|---|---|
H1 | 576 | 437 | 23.1 | 0.06 |
H2 | 599 | 399 | 15.22 | 0.06 |
H3 | 530 | 382 | 15.15 | 0.06 |
H4 | 449 | 237 | 14.76 | 0.06 |
H5 | 368 | 177 | 10.7 | 0.06 |
H6 | 121 | 114 | 149.6 | 1 |
H7 | 202 | 185 | 258.2 | 1 |
H8 | 185 | 113 | 8.38 | 1 |
H9 | 140 | 120 | 59.89 | 1 |
H10 | 69 | 66 | 165.79 | 1 |
H11 | 120 | 68 | 8.74 | 1 |
H12 | 67 | 35 | 7.62 | 1 |
H13 | 1034.5 | 576 | 21.3 | 0.06 |
C1 | 123 | 343 | 10.61 | 0.06 |
C2 | 20 | 156 | 6.65 | 1.2 |
C3 | 156 | 157 | 3291 | 2 |
C4 | 20 | 182 | 26.63 | 1.2 |
C5 | 182 | 318 | 31.19 | 1.2 |
C6 | 318 | 320 | 4011.83 | 2 |
C7 | 322 | 923.78 | 17.6 | 0.06 |
HU | 927 | 927 | — | 5 |
CU | 9 | 17 | — | 1 |
文献 | 换热单元个数 | 最小传热温差/℃ | 公用工程/(USD·a-1) | 设备投资/(USD·a-1) | TAC/(USD·a-1) |
---|---|---|---|---|---|
[ | 19 | 9.18 | 487173.25 | 1029308.75 | 1516482① |
[ | 16 | 8.22 | 525660 | 936663 | 1462323① |
[ | 19 | 6.70 | 457767.5 | 961213.5 | 1418981 |
本文 | 18 | 3.78 | 470125 | 942861 | 1412986 |
表2 算例1优化结果与文献值的比较
Table 2 Comparison of optimal results for case 1
文献 | 换热单元个数 | 最小传热温差/℃ | 公用工程/(USD·a-1) | 设备投资/(USD·a-1) | TAC/(USD·a-1) |
---|---|---|---|---|---|
[ | 19 | 9.18 | 487173.25 | 1029308.75 | 1516482① |
[ | 16 | 8.22 | 525660 | 936663 | 1462323① |
[ | 19 | 6.70 | 457767.5 | 961213.5 | 1418981 |
本文 | 18 | 3.78 | 470125 | 942861 | 1412986 |
Stream | T in/℃ | T out/℃ | GCp/(kW·℃-1) | h/(kW·m-2·℃-1) |
---|---|---|---|---|
H1 | 180 | 75 | 30 | 2 |
H2 | 280 | 120 | 15 | 0.6 |
H3 | 180 | 75 | 30 | 0.3 |
H4 | 140 | 45 | 30 | 2 |
H5 | 220 | 120 | 25 | 0.08 |
H6 | 180 | 55 | 10 | 0.02 |
H7 | 170 | 45 | 30 | 2 |
H8 | 180 | 50 | 30 | 1.5 |
H9 | 280 | 90 | 15 | 1 |
H10 | 180 | 60 | 30 | 2 |
C1 | 40 | 230 | 20 | 1.5 |
C2 | 120 | 260 | 35 | 2 |
C3 | 40 | 190 | 35 | 1.5 |
C4 | 50 | 190 | 30 | 2 |
C5 | 50 | 250 | 20 | 2 |
C6 | 40 | 150 | 10 | 0.06 |
C7 | 40 | 150 | 20 | 0.4 |
C8 | 120 | 210 | 35 | 1.5 |
C9 | 40 | 130 | 35 | 1 |
C10 | 60 | 120 | 30 | 0.7 |
HU | 325 | 325 | - | 1 |
CU | 25 | 40 | - | 2 |
表3 算例2流体参数
Table 3 Parameter of streams for case 2
Stream | T in/℃ | T out/℃ | GCp/(kW·℃-1) | h/(kW·m-2·℃-1) |
---|---|---|---|---|
H1 | 180 | 75 | 30 | 2 |
H2 | 280 | 120 | 15 | 0.6 |
H3 | 180 | 75 | 30 | 0.3 |
H4 | 140 | 45 | 30 | 2 |
H5 | 220 | 120 | 25 | 0.08 |
H6 | 180 | 55 | 10 | 0.02 |
H7 | 170 | 45 | 30 | 2 |
H8 | 180 | 50 | 30 | 1.5 |
H9 | 280 | 90 | 15 | 1 |
H10 | 180 | 60 | 30 | 2 |
C1 | 40 | 230 | 20 | 1.5 |
C2 | 120 | 260 | 35 | 2 |
C3 | 40 | 190 | 35 | 1.5 |
C4 | 50 | 190 | 30 | 2 |
C5 | 50 | 250 | 20 | 2 |
C6 | 40 | 150 | 10 | 0.06 |
C7 | 40 | 150 | 20 | 0.4 |
C8 | 120 | 210 | 35 | 1.5 |
C9 | 40 | 130 | 35 | 1 |
C10 | 60 | 120 | 30 | 0.7 |
HU | 325 | 325 | - | 1 |
CU | 25 | 40 | - | 2 |
文献 | 换热单元个数 | 最小传热 温差/℃ | 公用工程/ (USD·a-1) | 设备投资/ (USD·a-1) | TAC/ (USD·a-1) |
---|---|---|---|---|---|
[ | 11 | 10.98 | 719580 | 1033691 | 1753271① |
[ | 10 | 10.26 | 718510 | 1021268 | 1739778① |
[ | 14 | 8.06 | 698105 | 1027190 | 1725295① |
[ | 11 | 9.13 | 708260 | 1023419 | 1731679 |
本文 | 12 | 8.25 | 660350 | 1067287 | 1727637 |
表4 20SP2算例优化结果与文献值的比较
Table 4 Comparison of optimal results for 20SP2
文献 | 换热单元个数 | 最小传热 温差/℃ | 公用工程/ (USD·a-1) | 设备投资/ (USD·a-1) | TAC/ (USD·a-1) |
---|---|---|---|---|---|
[ | 11 | 10.98 | 719580 | 1033691 | 1753271① |
[ | 10 | 10.26 | 718510 | 1021268 | 1739778① |
[ | 14 | 8.06 | 698105 | 1027190 | 1725295① |
[ | 11 | 9.13 | 708260 | 1023419 | 1731679 |
本文 | 12 | 8.25 | 660350 | 1067287 | 1727637 |
1 | Morar M , Agachi P S . Review: important contributions in development and improvement of the heat integration techniques[J]. Computers and Chemical Engineering, 2010, 34(8): 1171-1179. |
2 | Papoulias S A , Grossmann I E . A structural optimization approach in process synthesis(Ⅱ): Heat recovery networks[J]. Computers & Chemical Engineering, 1983, 7(6): 707-721. |
3 | Floudas C A , Ciric A R , Grossmann I E . Automatic synthesis of optimum heat exchanger network configurations[J]. AIChE Journal, 1986, 32(2): 276-290. |
4 | Cerda J , Westerburg A W . Synthesizing heat exchanger networks having restricted stream/stream matches using transportation problem formulations[J]. Chemical Engineering Science, 1983, 38(10): 1723-1740. |
5 | Linnhoff B , Hindmarsh E . The pinch design method for heat exchanger networks [J]. Chemical Engineering Science, 1983, 38(5): 745-763. |
6 | Ciric A R , Floudas C A . Heat exchanger network synthesis without decomposition[J]. Computers & Chemical Engineering, 1991, 15(6): 385-396. |
7 | Yee T F , Grossmann I E , Kravanja Z . Simultaneous optimization models for heat integration(Ⅲ): Process and heat exchanger network optimization[J]. Computers & Chemical Engineering, 1990, 14(11): 1185-1200. |
8 | Castier M . Rigorous multiple utility targeting in heat exchanger networks[J]. Energy Conversion and Management, 2012, 59: 74-85. |
9 | Choi S H , Manousiouthakis V . Global optimization methods for chemical process design: deterministic and stochastic approaches[J]. Korean Journal of Chemical Engineering, 2002, 19(2): 227-232. |
10 | Dolan W B , Cummings P T , Levan M D . Process optimization via simulated annealing: application to network design[J]. AIChE Journal, 2010, 35(5): 725-736. |
11 | Lotfi R , Boozarjomehry R B . Superstructure optimization in heat exchanger network (HEN) synthesis using modular simulators and a genetic algorithm framework[J]. Industrial & Engineering Chemistry Research, 2010, 49(10): 4731-4737. |
12 | Yerramsetty K M , Murty C V S . Synthesis of cost-optimal heat exchanger networks using differential evolution[J]. Computers and Chemical Engineering, 2008, 32(8): 1861-1876. |
13 | Silva A P , Ravagnani M A S S , Biscaia E C . Particle swarm optimisation applied in retrofit of heat exchanger networks[J]. Computer Aided Chemical Engineering, 2009, 27(9): 1035-1040. |
14 | 曹健, 牟鹏, 耿志强, 等 . 工业系统超结构模型应用研究进展[J]. 化工学报, 2017, 68(3): 801-810. |
Cao J , Mu P , Geng Z Q , et al . Research progress and application of superstructure model for industrial systems[J]. CIESC Journal, 2017, 68(3): 801-810. | |
15 | 陈帅, 罗娜 . 基于自适应竞争群优化算法的无分流换热网络综合[J]. 化工学报, 2016, 67(11): 4716-4723. |
Chen S , Luo N . Adaptive competitive swarm optimization for heat exchanger networks without split streams[J]. CIESC Journal, 2016, 67(11): 4716-4723. | |
16 | 李帅龙, 崔国民, 陈家星, 等 . 一种采用种群多样性监控和实时更新策略的粒子群优化算法[J]. 计算物理, 2017, 34(3): 344-354. |
Li S L , Cui G M , Chen J X , et al . An improved particle swarm optimization based on diversity monitor and real-time updating strategy[J]. Chinese Journal of Computational Physics, 2017, 34(3): 344-354. | |
17 | Yu H , Fang H , Yao P , et al . A combined genetic algorithm/simulated annealing algorithm for large scale system energy integration[J]. Computers & Chemical Engineering, 2000, 24(8): 2023-2035. |
18 | 陈家星, 崔国民, 彭富裕, 等 . 基于种群多样性的改进差分进化算法应用于换热网络优化[J]. 热能动力工程, 2017, 32(4): 29-37. |
Chen J X , Cui G M , Peng F Y , et al . An improved differential evolution algorithm based on population diversity and its application in heat exchanger network synthesis[J]. Journal of Engineering for Thermal Energy and Power, 2017, 32(4): 29-37. | |
19 | 鲍中凯, 崔国民, 肖媛, 等 . 基于结构多样性评价的换热网络全局最优化[J]. 计算物理, 2019, 36(2): 225-235. |
Bao Z K , Cui G M , Xiao Y , et al . Global optimization of heat exchanger network based on structure diversity evaluation[J]. Chinese Journal of Computational Physics, 2019, 36(2): 225-235. | |
20 | 肖媛, 崔国民, 李帅龙 . 一种新的用于换热网络全局优化的强制进化随机游走算法[J]. 化工学报, 2016, 67(12): 5140-5147. |
Xiao Y , Cui G M , Li S L . A novel random walk algorithm with compulsive evolution for global optimization of heat exchanger networks[J]. CIESC Journal, 2016, 67(12): 5140-5147. | |
21 | 孙涛, 崔国民, 陈家星 . 一种大步长激励的结构进化策略应用于换热网络优化[J]. 化工学报, 2018, 69(7): 3135-3148. |
Sun T , Cui G M , Chen J X . A structure evolution strategy motivated by large step size for optimization of heat exchanger network[J]. CIESC Journal, 2018, 69(7): 3135-3148. | |
22 | 鲍中凯, 崔国民, 陈家星 . 采用结构保护策略的强制进化随机游走算法优化换热网络[J]. 化工学报, 2017, 68(9): 3522-3531. |
Bao Z K , Cui G M , Chen J X . Optimization of heat exchanger network by random walk algorithm with compulsive evolution with structure-protection strategy[J]. CIESC Journal, 2017, 68(9): 3522-3531. | |
23 | Zamora J M , Grossmann I E . A global MINLP optimization algorithm for the synthesis of heat exchanger networks with no stream splits[J]. Computer & Chemical Engineering, 1998, 22(3): 367-384. |
24 | 肖媛 . 换热网络热集成的全局优化方法及超结构模型研究[D]. 上海: 上海理工大学, 2018. |
Xiao Y . Global optimization methods and superstructure model for heat integration of heat exchanger networks[D]. Shanghai: University of Shanghai for Science and Technology, 2018. | |
25 | Soršak A , Kravanja Z . Simultaneous MINLP synthesis of heat exchanger networks comprising different exchanger types[J]. Computers & Chemical Engineering, 2002, 26(4): 599-615. |
26 | Pavão L V , Costa C B B . Automated heat exchanger network synthesis by using hybrid natural algorithms and parallel processing[J]. Computers & Chemical Engineering, 2016, 94: 370-386. |
27 | Bao Z K , Cui G M , Chen J X , et al . A novel random walk algorithm with compulsive evolution combined with an optimum-protection strategy for heat exchanger network synthesis[J]. Energy, 2018, 152: 694-708. |
28 | Zhang H L , Cui G M . Optimal heat exchanger network synthesis based on improved cuckoo search via Lévy flights[J]. Chemical Engineering Research and Design, 2018, 134: 62-79. |
29 | Xiao W , Dong H G , Li X Q , et al . Synthesis of large-scale multistream heat exchanger networks based on stream pseudo temperature[J]. Chinese Journal of Chemical Engineering, 2006, 14(5): 574-583. |
30 | Luo X , Wen Q Y , Fieg G . A hybrid genetic algorithm for synthesis of heat exchanger networks[J]. Computers and Chemical Engineering, 2009, 33(6): 1169-1181. |
31 | Laukkanen T , Tveit T M , Ojalehto V , et al . Bilevel heat exchanger network synthesis with an interactive multi-objective optimization method[J]. Applied Thermal Engineering, 2012, 48(26): 301-316. |
32 | Pavão L V , Costa C B B , Ravagnani M A S S , et al . Large-scale heat exchanger networks synthesis using simulated annealing and the novel rocket fireworks optimization[J]. AIChE Journal, 2016, 63(5): 1582-1601. |
33 | Zhang C W , Cui G M , Peng F Y . A novel hybrid chaotic ant swarm algorithm for heat exchanger networks synthesis[J]. Applied Thermal Engineering, 2016, 104: 707-719. |
[1] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[2] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[3] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[4] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[5] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[6] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[7] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[8] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[9] | 周继鹏, 何文军, 李涛. 异形催化剂上乙烯催化氧化失活动力学反应工程计算[J]. 化工学报, 2023, 74(6): 2416-2426. |
[10] | 邵远哲, 赵忠盖, 刘飞. 基于共同趋势模型的非平稳过程质量相关故障检测方法[J]. 化工学报, 2023, 74(6): 2522-2537. |
[11] | 高学金, 姚玉卓, 韩华云, 齐咏生. 基于注意力动态卷积自编码器的发酵过程故障监测[J]. 化工学报, 2023, 74(6): 2503-2521. |
[12] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
[13] | 刘尚豪, 贾胜坤, 罗祎青, 袁希钢. 基于梯度提升决策树的三组元精馏流程结构最优化[J]. 化工学报, 2023, 74(5): 2075-2087. |
[14] | 周必茂, 许世森, 王肖肖, 刘刚, 李小宇, 任永强, 谭厚章. 烧嘴偏转角度对气化炉渣层分布特性的影响[J]. 化工学报, 2023, 74(5): 1939-1949. |
[15] | 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||