化工学报 ›› 2019, Vol. 70 ›› Issue (2): 572-580.DOI: 10.11949/j.issn.0438-1157.20181340
耿志强1,2(),景邵星1,2,白菊1,2,王仲凯1,2,朱群雄1,2,韩永明1,2()
收稿日期:
2018-11-15
修回日期:
2018-11-22
出版日期:
2019-02-05
发布日期:
2019-02-05
通讯作者:
韩永明
作者简介:
<named-content content-type="corresp-name">耿志强</named-content>(1973—),男,博士,教授,<email>gengzhiqiang@mail.buct.edu.cn</email>|韩永明(1987—),男,博士,副教授,<email>hanym@mail.buct.edu.cn</email>
基金资助:
Zhiqiang GENG1,2(),Shaoxing JING1,2,Ju BAI1,2,Zhongkai WANG1,2,Qunxiong ZHU1,2,Yongming HAN1,2()
Received:
2018-11-15
Revised:
2018-11-22
Online:
2019-02-05
Published:
2019-02-05
Contact:
Yongming HAN
摘要:
石油钻井是一项高风险性、耗资巨大的系统工程。为了智能预警石油钻井过程中的异常,缩短非生产时间,降低相关风险,提出一种基于移动窗稀疏主元分析法(MWSPCA)的案例推理(CBR)异常智能预警方法(MWSPCA-CBR)。首先利用MWSPCA算法分析钻井过程中的实时数据,快速定位出异常可能发生的时间,然后使用基于案例推理方法分析异常数据,确定可能的异常类型,并为实时监控专家提供相关异常的处理方法。所提方法应用到石油钻井过程异常预警中,实验结果验证了所提方法的可行性和有效性,为钻井过程降低风险成本提供了新思路。
中图分类号:
耿志强, 景邵星, 白菊, 王仲凯, 朱群雄, 韩永明. 基于MWSPCA-CBR的智能预警方法研究及其在石化工业中的应用[J]. 化工学报, 2019, 70(2): 572-580.
Zhiqiang GENG, Shaoxing JING, Ju BAI, Zhongkai WANG, Qunxiong ZHU, Yongming HAN. Improved intelligent warning method based on MWSPCA-CBR and its application in petrochemical industries[J]. CIESC Journal, 2019, 70(2): 572-580.
名 称 | 内 容 |
---|---|
案例时间 | 2014/01/10 19:25 |
异常名称 | 悬重参数异常 |
异常类型 | 工程异常 |
异常地层 | 馆陶组 |
异常井深 | 1489.21 m |
异常描述 | 2014年1月10日19:25时正常钻进至井深1489.21 m,迟深1489.00 m。测斜后下钻过程中钻头位置到达1479.65 m时,大钩下放时悬重由正常的480 kN下降至260 kN,大钩上提时悬重由正常的480 kN上升至660 kN,出现粘卡现象。当班人员立即通知井队当班干部及工程监督。 |
关键词 | 钻进,下钻,大钩下放,大钩负荷下降,大钩上提,大钩负荷上升 |
异常结论 | 粘卡(属卡钻中的一种) |
表1 卡钻故障的案例描述
Table 1 Case description of pipe-sticking
名 称 | 内 容 |
---|---|
案例时间 | 2014/01/10 19:25 |
异常名称 | 悬重参数异常 |
异常类型 | 工程异常 |
异常地层 | 馆陶组 |
异常井深 | 1489.21 m |
异常描述 | 2014年1月10日19:25时正常钻进至井深1489.21 m,迟深1489.00 m。测斜后下钻过程中钻头位置到达1479.65 m时,大钩下放时悬重由正常的480 kN下降至260 kN,大钩上提时悬重由正常的480 kN上升至660 kN,出现粘卡现象。当班人员立即通知井队当班干部及工程监督。 |
关键词 | 钻进,下钻,大钩下放,大钩负荷下降,大钩上提,大钩负荷上升 |
异常结论 | 粘卡(属卡钻中的一种) |
关键词相似度 | 井深相似度 | 数据相似度 | 总相似度 | 案例名 |
---|---|---|---|---|
0.82 | 0.76 | 0.86 | 0.49 | 案例1 |
0.82 | 0.51 | 0.85 | 0.45 | 案例9 |
0.77 | 0.55 | 0.85 | 0.44 | 案例8 |
0.82 | 0.45 | 0.87 | 0.44 | 案例4 |
0.82 | 0.45 | 0.86 | 0.44 | 案例5 |
0.77 | 0.46 | 0.87 | 0.43 | 案例2 |
0.77 | 0.57 | 0.75 | 0.42 | 案例7 |
0.77 | 0.46 | 0.75 | 0.40 | 案例3 |
0.82 | 0.45 | 0.69 | 0.40 | 案例6 |
表2 异常时间段与案例库中的案例相似度
Table 2 Similarity between current anomaly and cases in case base
关键词相似度 | 井深相似度 | 数据相似度 | 总相似度 | 案例名 |
---|---|---|---|---|
0.82 | 0.76 | 0.86 | 0.49 | 案例1 |
0.82 | 0.51 | 0.85 | 0.45 | 案例9 |
0.77 | 0.55 | 0.85 | 0.44 | 案例8 |
0.82 | 0.45 | 0.87 | 0.44 | 案例4 |
0.82 | 0.45 | 0.86 | 0.44 | 案例5 |
0.77 | 0.46 | 0.87 | 0.43 | 案例2 |
0.77 | 0.57 | 0.75 | 0.42 | 案例7 |
0.77 | 0.46 | 0.75 | 0.40 | 案例3 |
0.82 | 0.45 | 0.69 | 0.40 | 案例6 |
1 | 张正选, 梅大成, 高杰, 等. 钻井工程异常预警方法研究[J]. 计算机光盘软件与应用, 2014, 17(4): 152-152. |
ZhangZ X, MeiD C, GaoJ, et al. Research on abnormity warning method in drilling engineering [J]. Computer CD Software and Applications, 2014, 17(4): 152-152. | |
2 | GaoF, ZhaoX H, LiuH S, et al. The study of drilling safe monitoring system based on multi agent group [C]// Advanced Materials Research. Trans. Tech. Publications, 2012, 512: 2565-2569. |
3 | 王林. 钻井故障诊断专家系统的研究与实现[D]. 成都: 电子科技大学, 2013. |
WangL. The research and implementation of drilling fault diagnosis expert system [D]. Chengdu: University of Electronic Science and Technology of China, 2013. | |
4 | 胡睿. 钻井复杂情况与事故诊断专家系统研究[D]. 青岛: 中国石油大学(华东), 2010. |
HuR. Research on drilling complex incidents and accident diagnosis based on expert system [D].Qingdao: China University of Petroleum, 2010. | |
5 | 张学洪, 李黔. 基于案例推理的井漏风险预警方法[J]. 断块油气田, 2017, 24(2): 255-258, 263. |
ZhangX H, LiQ. Risk pre-warning method of well leakage based on case reasoning [J]. Fault-Block Oil & Gas Field, 2017, 24(2): 255-258, 263. | |
6 | 徐术国. 基于录井数据的钻井事故预警专家系统[D].北京: 中国石油大学(北京), 2011. |
XuS G. Drilling accident warning expert system based on logging data [D]. Beijing: China University of Petroleum, 2011. | |
7 | 马鹏鹏, 周英操, 蒋宏伟, 等. 钻井风险控制系统关键技术[J]. 石油钻探技术, 2014, 42(3): 16-21. |
MaP P, ZhouY C, JiangH W, et al. Key technology for drilling risk control system [J]. Petroleum Drilling Techniques, 2014, 42(3): 16-21. | |
8 | FerreiroS, SierraB, IrigoienI, et al. Data mining for quality control: Burr detection in the drilling process[J]. Computers & Industrial Engineering, 2011, 60(4): 801-810. |
9 | 袁俊和. 钻井过程中的故障诊断方法研究[D]. 青岛: 中国石油大学(华东), 2008. |
YuanJ H. Study of fault diagnosis methods in well drilling process [D]. Qingdao: China University of Petroleum, 2008. | |
10 | 张东海, 席继强. 国外钻井技术发展现状[J]. 断块油气田, 2000, 7(5): 64-68. |
ZhangD H, XiJ Q. Development status of foreign drilling technology [J]. Fault-Block Oil & Gas Field, 2000, 7(5): 64-68. | |
11 | RamamurthiK, ShaverD P, AgoginoA M. Real time expert system for predictive diagnostics and control of drilling operation[C]//Artificial Intelligence Applications, 1990. Sixth Conference on. IEEE, 1990: 62-69. |
12 | LaiZ, LengY. Weak-signal detection based on the stochastic resonance of bistable Duffing oscillator and its application in incipient fault diagnosis[J]. Mechanical Systems and Signal Processing, 2016, 81: 60-74. |
13 | KedadoucheM, ThomasM, TahanA. A comparative study between empirical wavelet transforms and empirical mode decomposition methods: application to bearing defect diagnosis [J]. Mechanical Systems and Signal Processing, 2016, 81: 88-107. |
14 | 连晓圆. 钻井过程中故障检测与诊断方法的研究[D]. 大连: 大连理工大学, 2013. |
LianX Y. Fault detection and diagnosis method in drilling process[D]. Dalian: Dalian University of Technology, 2013. | |
15 | 孙正义, 高兴坤. 钻井卡钻事故预测及诊断专家系统模型的建立与实现[J]. 石油钻采工艺, 1996, 18(1): 20-23. |
SunZ Y, GaoX K. The establishment and implementation of drilling accident prediction and the model of diagnosis expert system [J]. Oil Drilling & Production Technology, 1996, 18(1): 20-23. | |
16 | 王宝毅, 张宝生, 费沿光, 等. 基于案例推理的钻井复杂情况专家系统[J]. 石油大学学报(自然科学版), 2005, 29(6): 123-126. |
WangB Y, ZhangB S, FeiY G, et al. A drilling troubles expert system based on case-based reasoning [J]. Journal of China University of Petroleum(Edition of Natural Science), 2005, 29(6): 123- 126. | |
17 | 郭建明, 李琪, 徐英卓. 基于实例和规则集成推理的钻井事故诊断处理系统[J]. 石油钻探技术, 2007, 35(3): 15-18. |
GuoJ M, LiQ, XuY Z. Drilling accident diagnosis and treatment system based on case and rule integration reasoning [J]. Petroleum Drilling Techniques, 2007, 35(3): 15-18. | |
18 | 高晓荣, 徐英卓, 李琪. 基于CBR的井下复杂情况与事故智能诊断和处理系统[J]. 计算机应用研究, 2008, (5): 1446-1449. |
GaoX R, XuY Z, LiQ. Intelligent diagnosis and processing system of complex situation in well and accident based on CBR [J]. Computer Application and Research, 2008, (5): 1446-1449. | |
19 | 郭伟伟. 基于故障树技术的远程故障诊断专家系统的研究[D]. 西安: 西北工业大学, 2007. |
GuoW W. Research on remote fault diagnosis expert system based on fault tree technology [D]. Xi an: Northwestern Polytechnical University, 2007. | |
20 | 倪绍徐, 张裕芳, 易宏, 等. 基于故障树的智能故障诊断方法[J]. 上海交通大学学报, 2008, 42(8): 1372-1375. |
NiS X, ZhangY F, YiH, et al. Intelligent fault diagnosis method based on fault tree [J]. Journal of Shanghai Jiao Tong University, 2008, 42(8): 1372-1375. | |
21 | 郭建明, 王彦平. 基于钻井工艺过程的事故诊断智能分析模型研究[J]. 西安石油大学学报(自然科学版), 2012, 27(3): 50-53. |
GuoJ M, WangY P. Research on accident diagnosis intelligent analysis model based on drilling process [J]. Journal of Xi an Petroleum University, 2012, 27(3): 50-53. | |
22 | JolliffeI T. Principal component analysis and factor analysis [M]//Principal Component Analysis. New York: Springer, 1986: 115-128. |
23 | 董顺, 李益国, 孙栓柱, 等. 基于状态空间主成分分析网络的故障检测方法[J]. 化工学报, 2018, 69(8): 3528-3536. |
DongS, LiY G, SunS Z, et al. Fault detection method based on state space-PCANet [J]. CIESC Journal, 2018, 69(8): 3528-3536. | |
24 | CuiK, GaoQ, ZhangH, et al. Merging model-based two-dimensional principal component analysis[J]. Neurocomputing, 2015, 168: 1198-1206. |
25 | 张媛媛, 韩少廷, 耿志强, 等. 自适应移动窗递推 PCA 过程监测方法研究[J]. 计算机与应用化学, 2011, (8): 1022-1026. |
ZhangY Y, HanS T, GengZ Q, et al. Study on adaptive moving window recursive principal component analysis for process monitoring [J]. Computers and Applied Chemistry, 2011, (8): 1022-1026. | |
26 | 胡云鹏. 基于主元分析的传感器故障检测盲区预测[J]. 化工学报, 2017, 68(4): 1510-1515. |
HuY P. Blind zone prediction for PCA-based sensor fault detection [J].CIESC Journal, 2017, 68(4): 1510-1515. | |
27 | 彭必灿, 张正道. 基于稀疏主元分析的过程监控研究[J]. 计算机工程与应用, 2014, (18): 240-245. |
PengB C, ZhangZ D. Process monitoring research based on sparse principal component analysis [J]. Computer Engineering and Applications, 2014, (18): 240-245. | |
28 | 赵忠盖, 刘飞. 基于稀疏核主元分析的在线非线性过程监控[J]. 化工学报, 2008, 59(7): 1773-1777. |
ZhaoZ G, LiuF. Online nonlinear process monitoring based on sparse kernel principal component analysis [J]. Journal of Chemical Industry and Engineering(China), 2008, 59(7): 1773-1777. | |
29 | ZassR, ShashuaA. Nonnegative sparse PCA [C]// Proceedings of the Twentieth Annual Conference on Neural Information Processing Systems. Vancouver, British Columbia, Canada, 2006. |
30 | 阮跃. 基于案例, 规则和模型推理的电站智能诊断系统[J]. 电站系统工程, 1998, 14(3): 45-47. |
RuanY. Intelligent diagnosis system of power plant based on case, rule and inferential model [J]. Power System Engineering, 1998, 14(3): 45-47. | |
31 | 张琦, 孙劭文, 李文鸿, 等. 基于案例推理的机械故障诊断方法探讨[J]. 解放军理工大学学报(自然科学版), 2004, 5(5): 42-45. |
ZhangQ, SunS W, LiW H, et al. Case-based reasoning for mechanical fault diagnosis [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2004, 5(5): 42-45. | |
32 | 李亚宁, 王学雷, 谭杰. 基于 PCR-多案例融合的焦化烟气脱硝过程指标优化设定[J]. 化工学报, 2018, 69(3): 998-1007. |
LiY N, WangX L, TanJ. PCR-multi-case fusion method for setting optimal process indices of coking flue gas denitration [J]. CIESC Journal, 2018, 69(3): 998-1007. | |
33 | 柳玉, 贲可荣. 案例推理的故障诊断技术研究综述[J].计算机科学与探索, 2011, 5(10): 865-879. |
LiuY, BenK R. Survey of fault diagnosis based on case reasoning [J]. Journal of Frontiers of Computer Science and Technology, 2011, 5(10): 865-879. |
[1] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[2] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[3] | 王光, 单发顺, 钱禹丞, 焦建芳. 基于集成学习传递熵的化工过程微小故障检测方法[J]. 化工学报, 2023, 74(7): 2967-2978. |
[4] | 苏晓丹, 朱干宇, 李会泉, 郑光明, 孟子衡, 李防, 杨云瑞, 习本军, 崔玉. 湿法磷酸半水工艺考察与石膏结晶过程研究[J]. 化工学报, 2023, 74(4): 1805-1817. |
[5] | 张中秋, 李宏光, 石逸林. 基于人工预测调控策略的复杂化工过程多任务学习方法[J]. 化工学报, 2023, 74(3): 1195-1204. |
[6] | 张江淮, 赵众. 碳三加氢装置鲁棒最小协方差约束控制及应用[J]. 化工学报, 2023, 74(3): 1216-1227. |
[7] | 赵涛岩, 曹江涛, 李平, 冯琳, 商瑀. 区间二型模糊免疫PID在环己烷无催化氧化温度控制系统中的应用[J]. 化工学报, 2022, 73(7): 3166-3173. |
[8] | 周乐, 沈程凯, 吴超, 侯北平, 宋执环. 深度融合特征提取网络及其在化工过程软测量中的应用[J]. 化工学报, 2022, 73(7): 3156-3165. |
[9] | 王琨, 侍洪波, 谭帅, 宋冰, 陶阳. 局部时差约束邻域保持嵌入算法在故障检测中的应用[J]. 化工学报, 2022, 73(7): 3109-3119. |
[10] | 王建松, 许锋, 罗雄麟. 化工过程多回路PID控制系统模式切换参数自整定[J]. 化工学报, 2022, 73(4): 1647-1657. |
[11] | 刘立邦, 杨颂, 王志坚, 贺欣欣, 赵文磊, 刘守军, 杜文广, 米杰. 基于改进WOA-LSTM的焦炭质量预测[J]. 化工学报, 2022, 73(3): 1291-1299. |
[12] | 张成, 潘立志, 李元. 基于加权统计特征KICA的故障检测与诊断方法[J]. 化工学报, 2022, 73(2): 827-837. |
[13] | 张兴硕, 罗雄麟, 许锋. 催化裂化装置反再系统动态模拟精细化与控制系统“工艺优先”配对设计[J]. 化工学报, 2022, 73(2): 747-758. |
[14] | 卢道铭, 唐钊艇, 范怡平, 卢春喜. 大差异颗粒分级再生设备的性能研究[J]. 化工学报, 2021, 72(8): 4184-4195. |
[15] | 李元, 杨东昇, 赵丽颖, 张成. 层次变分高斯混合模型与主多项式分析的故障检测策略[J]. 化工学报, 2021, 72(3): 1616-1626. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||