1 |
葛志强. 复杂工业过程统计监测方法研究[D]. 杭州: 浙江大学, 2009.
|
|
GeZ Q. Statistical process monitoring methods for complex processes[D]. Hangzhou: Zhejiang University, 2009.
|
2 |
BeardR V. Failure accommodation in linear systems through self-reorganization[D]. Massachusetts: MIT, 1971.
|
3 |
VenkatasubramanianV, RengaswamyR, YinK. A review of process fault detection and diagnosis (II): Quantitative models and search strategies[J]. Computers and Chemical Engineering, 2003, 27: 313-326.
|
4 |
VenkatasubramanianV, RengaswamyR, YinK. A review of process fault detection and diagnosis (III): Process history based methods[J]. Computers and Chemical Engineering, 2003, 27: 327-346.
|
5 |
周东华, 席裕庚, 张钟俊. 故障检测与诊断技术[J]. 控制理论与应用, 1991, 8(1): 1-10.
|
|
ZhouD H, XiY G, ZhangZ J. A survey on fault detection and diagnostics techniques[J]. Control theory and applications, 1991, 8(1): 1-10.
|
6 |
MacGregorJ F, JaeckleC, KiparissidesC, et al. Process monitoring and diagnosis by multiblock PLS methods[J]. AIChE Journal, 1994, 40(5): 826-838.
|
7 |
WesterhuisJ A, KourtiT, MacGregorJ F. Analysis of multiblock and hierarchical PCA and PLS models[J]. Journal of Chemometrics, 1998, 12(5): 301-321.
|
8 |
QinS J, ValleS, PiovosoM J. On unifying multiblock analysis with application to decentralized process monitoring[J]. Journal of Chemometrics, 2001, 15(9): 715-742.
|
9 |
YuanT, QinS J. Root cause diagnosis of plant-wide oscillations using Granger causality[J]. Journal of Process Control, 2014, 24(2):450-459.
|
10 |
GeZ Q, SongZ H. Distributed PCA model for plant-wide process monitoring[J]. Industrial & Engineering Chemistry Research, 2013, 52(5): 1947-1957.
|
11 |
GeZ Q, ZhangM G, SongZ H. Nonlinear process monitoring based on linear subspace and Bayesian inference[J]. Journal of Process Control, 2010, 20(5): 676-688.
|
12 |
ZhuJ L, GeZ Q, SongZ H, et al. Large-scale plant-wide process modeling and hierarchical monitoring: a distributed Bayesian network approach[J]. Journal of Process Control, 2018, 65: 91-106.
|
13 |
HuangJ P, YanX F. Relevant and independent multi-block approach for plant-wide process and quality-related monitoring based on KPCA and SVDD[J]. ISA transactions, 2018, 73: 257-267.
|
14 |
PengK X, ZhangK, YouB, et al. Quality-related prediction and monitoring of multi-mode processes using multiple PLS with application to an industrial hot strip mill[J]. Neurocomputing, 2015, 168(10): 1094-1103.
|
15 |
PengK X, ZhangK, YouB, et al. A quality-based nonlinear fault diagnosis framework focusing on industrial multimode batch processes[J]. IEEE Trans. Ind. Electron., 2016, 63(4): 2615-2624.
|
16 |
李伟. 复杂系统的智能故障诊断技术现状及其发展趋势[J].计算机仿真, 2004, 21(10):4-7.
|
|
LiW. Advance of intelligent fault diagnosis for complex system and its present situation [J]. Computer Simulation, 2004, 21(10):4-7.
|
17 |
LeeJ M, QinS J, LeeI B. Fault detection and diagnosis of multivariate process based on modified independent component analysis[J]. AIChE Journal, 2006, 52: 3501-3514.
|
18 |
KomulainenT, SouranderM, Jamsa-JounelaS L. An online application of dynamic PLS to a dearomatization process[J]. Computer and Chemical Engineering, 2004, 28(12): 2611-2619.
|
19 |
PierreC. Independent component analysis. A new concept?[J]. Signal Processing, 1994, 36: 287-314.
|
20 |
HuangB. Bayesian methods for control loop monitoring and diagnosis[J]. Journal of Process Control, 2008, 18(9): 829-838.
|
21 |
QinS J. Statistical process monitoring: basics and beyond[J]. Journal of Chemometrics, 2003, 17(8/9): 480-502.
|
22 |
YpmaA, TaxD M J, DuinR P W. Robust machine fault detection with independent component analysis and support vector data description[C]// Neural Networks for Signal Processing Ix, 1999. Proceedings of the 1999 IEEE Signal Processing Society Workshop. Madison, WI, USA: IEEE, 2002: 67-76.
|
23 |
YoonS, MacGregorJ F. Fault diagnosis with multivariate statistical models (I): Using steady state fault signatures[J]. Journal of Process Control, 2001, 11(4): 387-400.
|
24 |
LiG, QinS J, YuanT. Data-driven root cause diagnosis of faults in process industries[J]. Chemometrics and Intelligent Laboratory Systems, 2016, 159: 1-11.
|
25 |
MacGregorJ F, KourtiT. Statistical process control of multivariate processes[J]. Control Engineering Practice, 1995, 3(3): 403-414
|
26 |
姜周曙, 翁翔彬, 王剑, 等. 反渗透海水淡化系统“脱盐率与产水量下降”故障树分析[J]. 化工学报, 2014, 65(6): 2172-2178.
|
|
JiangZ S, WengX B, WangJ, et al. Fault tree analysis on decreases of desalination rate and permeate flow rate of seawater reverse osmosis desalination system[J]. CIESC Journal, 2014, 65(6): 2172-2178.
|
27 |
TadaoM. Petri nets: properties, analysis and applications[J]. Proceeding of the IEEE, 1989, 77(4): 541-580.
|
28 |
GrangerC W J. Investigating causal relations by econometric models and cross-spectral methods[J]. Econometrica, 1969, 37(3): 424-438.
|
29 |
FrankE, HallM. A simple approach to ordinal classification[C]// European Conference on Machine Learning. London, UK: Springer-Verlag, 2001: 145-156.
|
30 |
Cao-VanK, BaetsB D. Growing decision trees in an ordinal setting[J]. International Journal of Intelligent Systems, 2003, 18(7):733-750.
|
31 |
HuQ H, GuoM Z, YuD R, et al. Information entropy for ordinal classification[J]. Science China Information Sciences, 2010, 53(6):1188-1200.
|
32 |
YeC, KilgourD M, HipelK W. Using a benchmark in case-based multiple-criteria ranking[J]. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 2009, 39(2):358-368.
|
33 |
梁晴晴, 韩华, 崔晓钰, 等. 基于主元分析-概率神经网络的制冷系统故障诊断[J]. 化工学报, 2016, 67(3): 1022-1031.
|
|
LiangQ Q, HanH, CuiX Y, et al. Fault diagnosis for refrigeration system based on PCA-PNN [J]. CIESC Journal, 2016, 67(3): 1022-1031.
|
34 |
黄景德, 崔山宝, 王兴贵. 正向推理型故障模糊预测系统的知识表示与推理[J]. 计算机工程, 2001, 27(2): 78-79.
|
|
HuangJ D, CuiS B, WangX G, et al. Knowledge expression and reasoning of fault fuzzy forecast system based on forewards reasoning[J]. Computer Engineering, 2001, 27(2): 78-79.
|
35 |
刘建国, 姜秀民, 王辉, 等. 流化床内石英砂的热破碎及其灰色预测模型[J]. 化工学报, 2008, 59(2): 328-334.
|
|
LiuJ G, JiangX M, WangH, et al. Thermal fragmentation of quartzite particles in fluidized bed and gray forecasting model [J]. Journal of Chemical Industry and Engineering(China), 2008, 59(2):328-334.
|
36 |
李琨, 韩莹, 佘东生, 等. 基于IFOA-KELM-MEA模型的游梁式抽油机采油系统井下工况的短期预测[J]. 化工学报, 2017, 68(1): 188-198.
|
|
LiK, HanY, SheD S, et al. IFOA-KELM-MEA model based transient prediction on down-hole working conditions of beam pumping units [J]. CIESC Journal, 2017, 68(1): 188-198.
|
37 |
赵旭. 基于统计学方法的过程监控与质量控制研究[D]. 上海: 上海交通大学, 2006.
|
|
ZhaoX. Research on process monitoring and quality control based on statistical methods [D]. Shanghai: Shanghai Jiao Tong University, 2006.
|