化工学报 ›› 2019, Vol. 70 ›› Issue (3): 1089-1098.DOI: 10.11949/j.issn.0438-1157.20180793
张兰河1,2(),张明爽1,郭静波3,贾艳萍1,李正1,陈子成1
收稿日期:
2018-07-13
修回日期:
2018-11-03
出版日期:
2019-03-05
发布日期:
2019-03-05
通讯作者:
张兰河
作者简介:
张兰河(1971—),男,博士,教授,<email>zhanglanhe@163.com</email>
基金资助:
Lanhe ZHANG1,2(),Mingshuang ZHANG1,Jingbo GUO3,Yanping JIA1,Zheng LI1,Zicheng CHEN1
Received:
2018-07-13
Revised:
2018-11-03
Online:
2019-03-05
Published:
2019-03-05
Contact:
Lanhe ZHANG
摘要:
为了研究铁元素对A2O工艺污泥絮凝性的影响,考察Fe3+在污泥上清液、胞外聚合物(extracellular polymeric substances,EPS)与底泥(Pellet)中的分布和迁移转化规律,结合三维荧光光谱(3D-EEM)、原子吸收和X射线衍射仪(XRD)分析Fe的存在形态和结构特征,揭示Fe3+与微生物代谢产物的作用机制,探索Fe3+对脱氮除磷效率的影响。结果表明:低浓度Fe3+(<10 mg·L-1)能够提高COD和TN去除率,促进微生物活性,增强污泥生物絮凝性;高浓度Fe3+(10~40 mg·L-1)则抑制微生物活性,使EPS总量升高,污泥絮体脱稳,LB、TB层PN/PS是影响污泥絮凝性的关键因素;Fe3+的投加强化生物除磷效率,当Fe3+浓度为40 mg·L-1时,TP去除率为93%。Fe3+在污泥混合液中的分布规律为TB>上清液>LB>SMP,Fe3+在生物体内富集累积,能够改变EPS各层的组分。
中图分类号:
张兰河, 张明爽, 郭静波, 贾艳萍, 李正, 陈子成. Fe3+在A2O工艺缺氧区的转化规律及其对污泥絮凝性的影响[J]. 化工学报, 2019, 70(3): 1089-1098.
Lanhe ZHANG, Mingshuang ZHANG, Jingbo GUO, Yanping JIA, Zheng LI, Zicheng CHEN. Transformation of Fe3+ and its effect on anoxic sludge flocculation in A2O process[J]. CIESC Journal, 2019, 70(3): 1089-1098.
COD/(mg·L-1) | TN/(mg·L-1) | TP/(mg·L-1) | DO/(mg·L-1) | pH | T/℃ | ||
---|---|---|---|---|---|---|---|
480—500 | 68—71 | 52—56 | 7.5—8.0 | 7.0—7.6 | 0.1—0.12 | 7.4—7.8 | 19—25 |
表1 进水水质指标
Table 1 Index of influent wasterwater
COD/(mg·L-1) | TN/(mg·L-1) | TP/(mg·L-1) | DO/(mg·L-1) | pH | T/℃ | ||
---|---|---|---|---|---|---|---|
480—500 | 68—71 | 52—56 | 7.5—8.0 | 7.0—7.6 | 0.1—0.12 | 7.4—7.8 | 19—25 |
Fe3+/ (mg·L-1) | PN/(mg·L-1) | PS/(mg·L-1) | PN/PS | EPS/(mg·L-1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SMP | LB | TB | SMP | LB | TB | SMP | LB | TB | SMP | LB | TB | |
0 | 5.17 | 11.83 | 38.5 | 5.66 | 2.86 | 6.42 | 0.9 | 4.14 | 6.00 | 10.83 | 14.69 | 44.92 |
5 | 15.17 | 21.83 | 55.17 | 5.47 | 5.09 | 6.98 | 2.77 | 4.29 | 7.90 | 20.64 | 26.93 | 64.15 |
10 | 21.83 | 18.5 | 96.83 | 4.91 | 3.58 | 7.55 | 4.45 | 5.16 | 12.83 | 26.76 | 22.08 | 104.38 |
20 | 40.17 | 16.83 | 108.5 | 6.6 | 5.47 | 9.06 | 6.08 | 3.08 | 11.98 | 46.27 | 22.30 | 117.56 |
30 | 38.5 | 21.83 | 96.83 | 6.79 | 6.6 | 16.04 | 5.67 | 3.31 | 6.04 | 45.29 | 28.44 | 112.87 |
40 | 51.83 | 31.83 | 118.5 | 8.49 | 7.36 | 18.68 | 6.10 | 4.33 | 6.34 | 60.32 | 39.19 | 137.18 |
表2 Fe3+对EPS、PN、PS含量的影响
Table 2 Effect of Fe3+ on EPS, PN and PS contents
Fe3+/ (mg·L-1) | PN/(mg·L-1) | PS/(mg·L-1) | PN/PS | EPS/(mg·L-1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SMP | LB | TB | SMP | LB | TB | SMP | LB | TB | SMP | LB | TB | |
0 | 5.17 | 11.83 | 38.5 | 5.66 | 2.86 | 6.42 | 0.9 | 4.14 | 6.00 | 10.83 | 14.69 | 44.92 |
5 | 15.17 | 21.83 | 55.17 | 5.47 | 5.09 | 6.98 | 2.77 | 4.29 | 7.90 | 20.64 | 26.93 | 64.15 |
10 | 21.83 | 18.5 | 96.83 | 4.91 | 3.58 | 7.55 | 4.45 | 5.16 | 12.83 | 26.76 | 22.08 | 104.38 |
20 | 40.17 | 16.83 | 108.5 | 6.6 | 5.47 | 9.06 | 6.08 | 3.08 | 11.98 | 46.27 | 22.30 | 117.56 |
30 | 38.5 | 21.83 | 96.83 | 6.79 | 6.6 | 16.04 | 5.67 | 3.31 | 6.04 | 45.29 | 28.44 | 112.87 |
40 | 51.83 | 31.83 | 118.5 | 8.49 | 7.36 | 18.68 | 6.10 | 4.33 | 6.34 | 60.32 | 39.19 | 137.18 |
1 | HwangK L, BangC H, ZohK D. Characteristics of methane and nitrous oxide emissions from the wastewater treatment plant[J]. Bioresource Technology, 2016, 214: 881-884. |
2 | 李浩, 闫玉洁, 谢慧君, 等. Fe3+对同步硝化反硝化过程氮元素迁移转化及N2O释放的影响[J]. 环境科学, 2015, 36(4): 1392-1398. |
LiH, YanY J, XieH J, et al. Effect of ferric iron on nitrogen immigration and transformation and nitrous oxide emission during simultaneous nitrification denitrification process[J]. Environmental Science, 2015, 36(4): 1392-1398. | |
3 | 雷绍民, 王欢, 王恩文, 等. 工业废水中多金属离子的吸附净化[J]. 环境工程学报, 2013, 7(2): 513-517. |
LeiS M, WangH, WangE W, et al. Adsorption and purification of multiple metal ions in industrial wastewater[J]. Chinese Journal of Environmental Engineering, 2013, 7(2): 513-517. | |
4 | 龙腾锐, 孟雪征, 赖震宏. Fe3+对活性污泥系统的影响[J]. 给水排水, 2004, 30(12): 15-17. |
LongT R, MengX Z, LaiZ H. Fe3+ effect on activated sludge system[J]. Water and Wastewater Engineering, 2004, 30(12): 15-17. | |
5 | WangY, LeslieG L, WaiteT D. Impact of iron dosing of membrane bioreactors on membrane fouling[J]. Chemical Engineering Journal, 2014, 252(18): 239-248. |
6 | LiH, WenY, CaoA, et al. The influence of additives (Ca2+, Al3+, and Fe3+) on the interaction energy and loosely bound extracellular polymeric substances (EPS) of activated sludge and their flocculation mechanisms[J]. Bioresource Technology, 2012, 114(2): 188-194. |
7 | 于海欢. Fe3+对MBR运行效能影响解析[D]. 吉林: 东北电力大学, 2016. |
YuH H. Analysis of the influence of Fe3+ on MBR performance[D]. Jilin: Northeast Electric Power University, 2016. | |
8 | WangX M, WaiteT D. Iron speciation and iron species transformation in activated sludge membrane bioreactors[J]. Water Research, 2010, 44(11): 3511-3521. |
9 | RaymondK N, AllredB E, SiaA K. Coordination chemistry of microbial iron transport[J]. Accounts of Chemical Research, 2015, 48(9): 2496-2505. |
10 | 操家顺, 江心, 方芳, 等. Fe3+对活性污泥胞内贮存物和胞外聚合物的影响[J]. 华中科技大学学报(自然科学版), 2014, 42(5): 101-106. |
CaoJ S, JiangX, FangF, et al. Influences of Fe3+ on intracellular storage and extracellular polymeric substance of activated sludge[J]. Journal of Huazhong University of Science and Technology, 2014, 42(5): 101-106. | |
11 | QuF, LiangH, HeJ, et al. Characterization of dissolved extracellular organic matter (dEOM) and bound extracellular organic matter (bEOM) of Microcystis aeruginosa and their impacts on UF membrane fouling[J]. Water Research, 2012, 46(9): 2881-2890. |
12 | 张兰河, 田蕊, 郭静波, 等. NaCl盐度对A2/O工艺缺氧区胞外聚合物及生物絮凝性的影响[J]. 环境科学, 2018, 39(9): 4281-4288. |
ZhangL H, TianR, GuoJ B, et al. Effect of NaCl salinity on extracellular polymeric substances and bioflocculation of anoxic sludge in A2/O process[J]. Environmental Science, 2018, 39(9): 4281-4288. | |
13 | 张海丰, 于海欢, 问志勇, 等. 铁离子分布规律及其对MBR微生物代谢产物的影响[J]. 硅酸盐通报, 2016, 35(3): 784-788. |
ZhangH F, YuH H, WenZ Y, et al. Distributions of Fe3+ and its influence on microbial products in membrane bioreactor[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(3): 784-788. | |
14 | ZhangH F, WangZ P , ZhangL H, et al. Impact of sludge cation distribution pattern on its filterability in membrane bioreactor[J]. Bioresource Technology, 2014, 171: 16-21. |
15 | TessierA, CampbellP G C, BissonM. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851. |
16 | 高峰. 黄、东海泥质区沉积物部分金属元素赋存形态研究[D]. 青岛: 中国海洋大学, 2009. |
GaoF. Study on the chemical forms of some metallic elements in the sediments of the mud area in the South Yellow and East China Seas[D]. Qingdao: Ocean University of China, 2009. | |
17 | 宋照亮, 刘丛强, 彭渤, 等. 逐级提取(SEE)技术及其在沉积物和土壤元素形态研究中的应用[J]. 地球与环境, 2004, 32(2): 70-77. |
SongZ L, LiuC Q, PengB, et al. Step-by-Step Extraction (SEE) technology and its application in sediment and soil element morphology research[J]. Earth and Environment, 2004, 32(2): 70-77. | |
18 | 寇明旭, 刘全阳. 金属离子对活性污泥微生物影响研究进展[J]. 山西建筑, 2007, 33(5): 176-177. |
KouM X, LiuQ Y. Researching process of the influence of metallic ion on active sludge microbe[J]. Shanxi Architeture, 2007, 33(5): 176-177. | |
19 | PinojelcicS A, HongS M, ParkJ K. Enhanced anaerobic biodegradability and inactivation of fecal coliforms and Salmonella spp. in wastewater sludge by using microwaves[J]. Water Environment Research A Research Publication of the Water Environment Federation, 2006, 78(2): 209-216. |
20 | 陈睿. Fe3+存在下好氧活性污泥处理制浆中段废水的研究[D]. 青岛: 青岛科技大学, 2014. |
ChenR. Study on treatment of mid-stage pulping effluent by aerobic activated sludge in the presence of Fe3+[D]. Qingdao: Qingdao University of Science and Technology, 2014. | |
21 | 易维洁, 曲东, 贾蓉. 不同淹水时间水稻土微生物群落的Fe(Ⅲ)还原能力及其与脱氢酶活性的关系[J]. 应用基础与工程科学学报, 2012, 20(5): 768-776. |
YiW J, QuD, JiaR. Relationships between Fe(Ⅲ) reduction and dehyrogenase activity of microbial communities in paddy soil during different flooding periods[J]. Journal of Basic Science and Engineering, 2012, 20(5): 768-776. | |
22 | ZhangY, LiB, XuR X, et al. Effects of pressurized aeration on organic degradation efficiency and bacterial community structure of activated sludge treating saline wastewater[J]. Bioresource Technology, 2016, 222: 182-189. |
23 | RabiS, NakhlA G. Impact of calcium on the membrane fouling in membrane bioreactors[J]. Journal of Membrane Science, 2008, 314(1): 134-142. |
24 | CornellR M, SchwertmannU. The iron oxides: structure, properties, reactions, occurrence and uses[J]. Mineralogical Magazine, 1997, 61(5):740-741. |
25 | LiJ, ZhaiS Y, WangY E, et al. The research of reduction characteristics of Fe(III) dissimilated by different activated sludge[J]. Advanced Materials Research, 2013, 663: 1011-1016. |
26 | OikonomidisI, BurrowsL J, CarliellmarquentC M. Mode of action of ferric and ferrous iron salts in activated sludge[J]. Journal of Chemical Technology and Biotechnology, 2010, 85(8): 1067-1076. |
27 | HuX, ChenK, LaiX, et al. Effects of Fe(III) on biofilm and its extracellular polymeric substances (EPS) in fixed bed biofilm reactors[J]. Water Science & Technology A Journal of the International Association on Water Pollution Research, 2016, 73(9): 2060. |
28 | LiH, WenY, CaoA, et al. The influence of multivalent cations on the flocculation of activated sludge with different sludge retention times[J]. Water Research, 2014, 55(2): 225-232. |
29 | WangZ, GaoM C, WangZ, et al. Effect of salinity on extracellular polymeric substances of activated sludge from an anoxic-aerobic sequencing batch reactor[J]. Chemosphere, 2013, 93(11): 2789-2795. |
30 | 马旭阳. 黄河水体沉积物中铁与磷的形态分布及相关分析[D]. 呼和浩特: 内蒙古师范大学, 2015. |
MaX Y. Distribution and correlation analysis of phosphorus and iron fractions in sediments of the Yellow River[D]. Hohhot: Inner Mongolia Normal University, 2015. | |
31 | 隆茜, 张经. 陆架区沉积物中重金属研究的基本方法及其应用[J]. 海洋湖沼通报, 2002, 25(3): 25-35. |
LongQ, ZhangJ. The method of heavy metals study in shelf sediments and its application[J]. Transaction of Oceanology and Limnology, 2002, 25(3): 25-35. | |
32 | 钱风越. Fe3O4纳米颗粒对厌氧消化产甲烷过程的影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. |
QianF Y. Effect of magnetite nanoparticles on methanogenesis by anaerobic bigestion[D]. Harbin: Harbin Institute of Technology,2015. | |
33 | WangX, QianJ, LiX, et al. Influences of sludge retention time on the performance of submerged membrane bioreactors with the addition of iron ion[J]. Desalination, 2012, 296(25): 24-29. |
34 | 何志江, 张源凯, 王洪臣, 等. 活性污泥絮凝沉降速率计算方法研究[J]. 环境污染与防治, 2015, 37(12): 35-40. |
HeZ J, ZhangY K, WangH C, et al. Study on calculation method of flocculation sedimentation rate of activated sludge[J]. Environmental Pollution and Control, 2015, 37(12): 35-40. | |
35 | 兰善红, 李慧洁, 王传路, 等. Fe3+对好氧活性污泥理化特性的影响[J]. 中国造纸学报, 2015, 30(4): 18-21. |
LanS H, LiH J, WangC L, et al. Effect of Fe3+ on physicochemical properties of aerobic activated sludge during domestication by pulping middle-stage effluent[J]. Transactions of China Pulp and Paper, 2015, 30(4): 18-21. | |
36 | AbbasiA, AmiriS. Emulsifying behavior of an exopolysaccharide produced by enterobacter cloacae[J]. African Journal of Biotechnology, 2008, 7(10): 1574-1576. |
[1] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[2] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[3] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
[4] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[5] | 张艳梅, 袁涛, 李江, 刘亚洁, 孙占学. 高效SRB混合菌群构建及其在酸胁迫条件下的性能研究[J]. 化工学报, 2023, 74(6): 2599-2610. |
[6] | 张兰河, 赖青燚, 王铁铮, 关潇卓, 张明爽, 程欣, 徐小惠, 贾艳萍. H2O2对SBR脱氮效率和污泥性能的影响[J]. 化工学报, 2023, 74(5): 2186-2196. |
[7] | 闫新龙, 黄志刚, 胡清勋, 张新, 胡晓燕. Cu/Co掺杂多孔炭活化过硫酸盐降解水中硝基酚研究[J]. 化工学报, 2023, 74(3): 1102-1112. |
[8] | 郑少杰, 王建斌, 胡激江, 李伯耿, 袁文博, 王宗, 姚臻. 单体组成切换法调控聚丙烯/丁烯合金的结构与性能[J]. 化工学报, 2023, 74(2): 904-915. |
[9] | 李承威, 骆华勇, 张铭轩, 廖鹏, 方茜, 荣宏伟, 王竞茵. 氢氧化镧交联壳聚糖微球的微流控制备及其除磷性能[J]. 化工学报, 2022, 73(9): 3929-3939. |
[10] | 袁妮妮, 郭拓, 白红存, 何育荣, 袁永宁, 马晶晶, 郭庆杰. 化学链燃烧过程Fe2O3/Al2O3载氧体表面CH4反应:ReaxFF-MD模拟[J]. 化工学报, 2022, 73(9): 4054-4061. |
[11] | 王悦琳, 晁伟, 蓝晓程, 莫志朋, 佟淑环, 王铁峰. 合成气生物发酵法制乙醇的研究进展[J]. 化工学报, 2022, 73(8): 3448-3460. |
[12] | 朱江伟, 马鹏飞, 杜晓, 杨言言, 郝晓刚, 罗善霞. 基于可变价NiFe-LDH/rGO对磷酸根离子的特异性电控分离[J]. 化工学报, 2022, 73(7): 3057-3067. |
[13] | 陈永安, 周安宁, 李云龙, 石智伟, 贺新福, 焦卫红. 磁性MgFe2O4及其核壳催化剂制备与煤热解性能研究[J]. 化工学报, 2022, 73(7): 3026-3037. |
[14] | 万景, 张霖, 樊亚超, 刘勰民, 骆培成, 张锋, 张志炳. 基于介尺度PBM模型的生物反应器放大模拟及实验研究[J]. 化工学报, 2022, 73(6): 2698-2707. |
[15] | 贾艳萍, 丁雪, 刚健, 佟泽为, 张海丰, 张兰河. Mn强化Fe/C微电解工艺条件优化及降解油墨废水机理[J]. 化工学报, 2022, 73(5): 2183-2193. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||