化工学报 ›› 2022, Vol. 73 ›› Issue (7): 3057-3067.doi: 10.11949/0438-1157.20220329

• 分离工程 • 上一篇    下一篇

基于可变价NiFe-LDH/rGO对磷酸根离子的特异性电控分离

朱江伟1(),马鹏飞1(),杜晓1,杨言言2,郝晓刚1(),罗善霞3   

  1. 1.太原理工大学化学化工学院,山西 太原 030024
    2.上饶师范学院化学与环境科学学院,江西 上饶 334001
    3.河北省区域地质调查院,河北 廊坊 065000
  • 收稿日期:2022-03-03 修回日期:2022-05-19 出版日期:2022-07-05 发布日期:2022-08-01
  • 通讯作者: 马鹏飞,郝晓刚 E-mail:zhujiangwei9712@163.com;mapengfei01@tyut.edu.cn;xghao@tyut.edu.cn
  • 作者简介:朱江伟(1997—),男,硕士研究生,zhujiangwei9712@163.com
  • 基金资助:
    中国博士后科学基金项目(2020M680916);国家自然科学基金区域创新发展联合基金项目(U21A20303);上饶市高校研发投入后补助资金科技计划项目

Specific electronically controlled separation of phosphate anions based on variable valence NiFe-LDH/rGO

Jiangwei ZHU1(),Pengfei MA1(),Xiao DU1,Yanyan YANG2,Xiaogang HAO1(),Shanxia LUO3   

  1. 1.Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
    2.School of Chemistry and Environmental Science, Shangrao Normal University, Shangrao 334001, Jiangxi, China
    3.Hebei Institute of Regional Geological Survey, Langfang 065000, Hebei, China
  • Received:2022-03-03 Revised:2022-05-19 Published:2022-07-05 Online:2022-08-01
  • Contact: Pengfei MA,Xiaogang HAO E-mail:zhujiangwei9712@163.com;mapengfei01@tyut.edu.cn;xghao@tyut.edu.cn

摘要:

磷是一种不可再生资源。为解决现有磷污染以及磷资源流失等问题,通过油浴与热化学还原相结合的方法,成功制备出一种NiFe-LDH/rGO电活性杂化膜材料。使用电化学方法,在氧化还原电位的控制下,Ni、Fe(Ⅱ/Ⅲ)双金属发生核外电子的跃迁,高价态的Ni、Fe(Ⅲ)与PO43-发生内球络合作用,实现PO43-的选择性置入-置出。实验获得270 mg·g-1的高PO43-吸附容量及85%以上的再生效率。此外,该杂化膜材料在共存离子存在的复杂水体中,对PO43-具有优异的选择性,为磷石膏渗滤液以及各种含磷废水污染等问题的解决提供有效的理论技术支撑,具有广阔的应用前景。

关键词: NiFe-LDH/rGO, PO43-, 电化学, 选择性, 吸附容量, 稳定性

Abstract:

Phosphorus is a non-renewable resource. In order to solve the problems of existing phosphorus pollution and phosphorus resource loss, a NiFe-LDH/rGO electroactive hybrid film material was successfully prepared in this study by a combination of oil bath and thermochemical reduction. An ESIX process allows the NiFe-LDH/rGO hybrid film achieving a controllably selective uptake and release of the phosphate anions. This route involves tuning potential steps to regulate the redox states of the composite film and the variable metal (e.g., Ni, Fe (Ⅱ)/(Ⅲ)) in coordination centers, as the inner-sphere complexation of the metals to phosphate anions is combined with the assistance of the outer electric field. A high absorption capacity (270 mg·g-1) and regeneration rate (>85%) were achieved, together with good cycle stability. This route provides an efficient, theoretical and technical support to solve the problems phosphogypsum leachate and various phosphorus wastewater pollution, which presents a broad application prospect.

Key words: NiFe-LDH/rGO, phosphate anions, electrochemistry, selectivity, adsorption capacity, stability

中图分类号: 

  • O 646

图1

(a)~(c) 不同放大倍数下LDH的SEM图; (d) LDH/GO杂化材料的SEM图; (e)、(f)不同放大倍数下LDH/rGO杂化材料的SEM图"

图2

NiFe-LDH、NiFe-LDH/GO和NiFe-LDH/rGO的XRD谱图"

图3

(a) 0.1 mol·L-1 Na3PO4溶液中NiFe-LDH/rGO杂化膜在50 mV·s-1扫速下的CV曲线; (b) 0.1 mol·L-1 Na3PO4溶液中NiFe-LDH/rGO杂化膜阳极和阴极峰值电流随扫速平方根的变化规律"

表1

0.1 mol·L-1 Na3PO4溶液中不同扫速对应的阴、阳极峰值电流"

v/(mV·s-1)v1/2/(mV·s-1)1/2I/mA
Ni(阳极)Ni(阴极)Fe(阳极)Fe(阴极)
103.1620.167-0.232-0.038-0.188
204.4720.291-0.362-0.021-0.241
305.4770.390-0.4810.002-0.294
406.3240.500-0.5900.020-0.342
507.0710.589-0.6930.047-0.389

图4

0.1 mol·L-1 Na3PO4溶液中NiFe-LDH/rGO杂化膜在初始(上)、氧化(中)与还原(下)状态时的XPS谱图"

图5

不同初始浓度下NiFe-LDH/rGO杂化膜对PO43-的吸附容量"

表2

不同浓度下NiFe-LDH/rGO杂化膜对PO43-的动力学模型参数和相关因子"

C0/(mg·L-1)qe(exp)/( mg·g-1)Pseudo-first-orderPseudo-second-order
k1/min-1qe(cal)/( mg·g-1)R2k2/min-1qe(cal)/(mg·g-1)R2
101.5876.350.01160.1380.9481.55×10-490.0900.997
192.72121.740.017105.0470.8668.87×10-5149.4770.986
301.93200.180.018174.4930.9714.38×10-5236.9670.996
512.36269.680.012265.2190.9664.57×10-5282.4860.996

图6

ESIX (rGO)、 IX (NiFe-LDH/rGO)、 ESIX (NiFe-LDH)和ESIX (NiFe-LDH/rGO)对磷酸盐阴离子的吸附容量曲线"

图7

(a)NiFe-LDH/rGO杂化膜在初始浓度均为300 mg·L-1下对PO43-、 SO42-、 NO3-和Cl-的竞争性吸附; (b) 0.30 mol·L-1 NaNO3, 0.30 mol·L-1 NaCl, 0.15 mol·L-1 Na2SO4和0.10 mol·L-1 Na3PO4电解液中NiFe-LDH/rGO复合膜的CV曲线"

表3

NiFe-LDH/rGO杂化膜在初始浓度均为300 mg·L-1下对PO43-、SO42-、NO3-和Cl-的分离系数和相对分离因子"

AnionAdsorption capacity/(mg·g-1Separation coefficient (KD)Relative separation factor (α)
PO43-178.0120.8651
SO42-70.8710.2743.163
NO3-50.3360.1854.678
Cl-45.2480.1565.551

图8

NiFe-LDH/rGO杂化膜在300 mg·L-1的磷酸钠 (吸附) 和硝酸钠 (脱附) 溶液中对PO43-的吸脱附容量(a)和再生效率(b)"

图9

不同pH下NiFe-LDH/rGO杂化膜对磷酸根离子的吸附容量"

1 袁伟皓, 王华, 曾一川, 等. 大型通江湖泊藻类增殖驱动要素的时空分异特征[J]. 环境工程, 2021, 39(10): 64-71, 128.
Yuan W H, Wang H, Zeng Y C, et al. Spatiotemporal variation of driving factors of algal proliferation in a large river-connected lake[J]. Environmental Engineering, 2021, 39(10): 64-71, 128.
2 Wildemeersch M, Tang S H, Ermolieva T, et al. Containing the risk of phosphorus pollution in agricultural watersheds[J]. Sustainability, 2022, 14(3): 1717.
3 Garnache C, Swinton S, Herriges J, et al. Solving the phosphorus pollution puzzle: synthesis and directions for future research[J]. American Journal of Agricultural Economics, 2016, 98: 1334-1359.
4 秦伯强. 浅水湖泊湖沼学与太湖富营养化控制研究[J]. 湖泊科学, 2020, 32(5): 1229-1243.
Qin B Q. Shallow lake limnology and control of eutrophication in Lake Taihu[J]. Journal of Lake Sciences, 2020, 32(5): 1229-1243.
5 Sun Y, Feng X L, Zheng W S. Nanoscale lanthanum carbonate hybridized with polyacrylic resin for enhanced phosphate removal from secondary effluent[J]. Journal of Chemical & Engineering Data, 2020, 65(9): 4512-4522.
6 Wu B L, Lo I M C. Surface functional group engineering of CeO2 particles for enhanced phosphate adsorption[J]. Environmental Science & Technology, 2020, 54(7): 4601-4608.
7 Prashantha Kumar T K M, Mandlimath T R, Sangeetha P, et al. Nanoscale materials as sorbents for nitrate and phosphate removal from water[J]. Environmental Chemistry Letters, 2018, 16(2): 389-400.
8 Morimoto K, Anraku S, Hoshino J, et al. Surface complexation reactions of inorganic anions on hydrotalcite-like compounds[J]. Journal of Colloid and Interface Science, 2012, 384: 99-104.
9 Li N, Tian Y, Zhao J H, et al. Ultrafast selective capture of phosphorus from sewage by 3D Fe3O4@ZnO via weak magnetic field enhanced adsorption[J]. Chemical Engineering Journal, 2018, 341: 289-297.
10 Wu B, Wan J, Zhang Y, et al. Selective phosphate removal from water and wastewater using sorption: process fundamentals and removal mechanisms[J]. Environmental Science & Technology, 2020, 54: 50-66.
11 Niu J J, Yan W, Du J, et al. An electrically switched ion exchange film with molecular coupling synergistically-driven ability for recovery of Ag+ ions from wastewater[J]. Chemical Engineering Journal, 2020, 389: 12449-12457.
12 郝晓刚, 郭金霞, 张忠林, 等. 电沉积铁氰化镍薄膜的电控离子交换性能[J]. 化工学报, 2005, 56(12): 2380-2386.
Hao X G, Guo J X, Zhang Z L, et al. Electrochemically switched ion exchange properties of electrodeposited nickel hexacyanoferrate thin films[J]. Journal of Chemical Industry and Engineering (China), 2005, 56 (12): 2380-2386.
13 马旭莉, 张权, 杜晓, 等. α-ZrP/PANI电控离子交换膜对Pb2+的选择性分离[J]. 稀有金属材料与工程, 2016, 45(8): 2139-2145.
Ma X L, Zhang Q, Du X, et al. Selective separation to Pb2+ of electrochemically switched ion exchange film of α-ZrP/PANI[J]. Rare Metal Materials and Engineering, 2016, 45(8): 2139-2145.
14 Du X, Guan G Q, Li X M, et al. A novel electroactive λ-MnO2/PPy/PSS core-shell nanorod coated electrode for selective recovery of lithium ions at low concentration[J]. Journal of Materials Chemistry A, 2016, 4(36): 13989-13996.
15 Hong S P, Yoon H, Lee J, et al. Selective phosphate removal using layered double hydroxide/reduced graphene oxide (LDH/rGO) composite electrode in capacitive deionization[J]. Journal of Colloid and Interface Science, 2020, 564: 1-7.
16 Rahman S, Navarathna C M, Krishna Das N, et al. High capacity aqueous phosphate reclamation using Fe/Mg-layered double hydroxide (LDH) dispersed on biochar[J]. Journal of Colloid and Interface Science, 2021, 597: 182-195.
17 来天艺, 王纪康, 李天, 等. 光电解水产活性氢/氧耦合加氢/氧化过程用水滑石基纳米材料[J]. 化工学报, 2020, 71(10): 4327-4349.
Lai T Y, Wang J K, Li T, et al. Photoelectrochemical water splitting into active hydrogen/oxygen species coupling with hydrogenation/oxidation process using layered double hydroxides-based nanocatalysts[J]. CIESC Journal, 2020, 71(10): 4327-4349.
18 Liu C, Zhang M Y, Pan G, et al. Phosphate capture by ultrathin MgAl layered double hydroxide nanoparticles[J]. Applied Clay Science, 2019, 177: 82-90.
19 Tian M, Liu C F, Neale Z G, et al. Chemically bonding NiFe-LDH nanosheets on rGO for superior lithium-ion capacitors[J]. ACS Applied Materials & Interfaces, 2019, 11(39): 35977-35986.
20 Son Y R, Park S J. Influence of carboxymethyl cellulose content on structures and electrochemical behaviors of reduced graphene oxide films[J]. Electrochimica Acta, 2020, 330: 135219.
21 Shinde D B, Vlassiouk I V, Talipov M R, et al. Exclusively proton conductive membranes based on reduced graphene oxide polymer composites[J]. ACS Nano, 2019, 13(11): 13136-13143.
22 杨言言, 李永国, 祝小雯, 等. 电活性镍钴双金属氧化物高选择性去除/回收水中磷酸盐离子[J]. 无机材料学报, 2021, 36(3): 292-298.
Yang Y Y, Li Y G, Zhu X W, et al. Potential induced reversible removal/recovery of phosphate anions with high selectivity using an electroactive NiCo-layered double oxide film[J]. Journal of Inorganic Materials, 2021, 36(3): 292-298.
23 Forticaux A, Dang L N, Liang H F, et al. Controlled synthesis of layered double hydroxide nanoplates driven by screw dislocations[J]. Nano Letters, 2015, 15(5): 3403-3409.
24 Ghani M, Ghoreishi S M, Azamati M. Magnesium-aluminum-layered double hydroxide-graphene oxide composite mixed-matrix membrane for the thin-film microextraction of diclofenac in biological fluids[J]. Journal of Chromatography A, 2018, 1575: 11-17.
25 He H M, Kang H L, Ma S L, et al. High adsorption selectivity of ZnAl layered double hydroxides and the calcined materials toward phosphate[J]. Journal of Colloid and Interface Science, 2010, 343: 225-231.
26 Abo El-Reesh G Y, Farghali A A, Taha M, et al. Novel synthesis of Ni/Fe layered double hydroxides using urea and glycerol and their enhanced adsorption behavior for Cr(Ⅵ) removal[J]. Scientific Reports, 2020, 10: 587.
27 Chen J, Fan X L, Ji X, et al. Intercalation of Bi nanoparticles into graphite results in an ultra-fast and ultra-stable anode material for sodium-ion batteries[J]. Energy & Environmental Science, 2018, 11(5): 1218-1225.
28 Hao X G, Yan T, Wang Z D, et al. Unipolar pulse electrodeposition of nickel hexacyanoferrate thin films with controllable structure on platinum substrates[J]. Thin Solid Films, 2012, 520(7): 2438-2448.
29 Youmbi B S, Pélisson C H, Denicourt-Nowicki A, et al. Impact of the charge transfer process on the Fe2+/Fe3+ distribution at Fe3O4 magnetic surface induced by deposited Pd clusters[J]. Surface Science, 2021, 712: 121879.
30 Wan J, Wu B L, Lo I M C. Development of Fe0/Fe3O4 composites with tunable properties facilitated by Fe2+ for phosphate removal from river water[J]. Chemical Engineering Journal, 2020, 388: 124242.
31 Ji W W, Niu J J, Zhang W, et al. An electroactive ion exchange hybrid film with collaboratively-driven ability for electrochemically-mediated selective extraction of chloride ions[J]. Chemical Engineering Journal, 2022, 427: 130807.
32 Zhao G Q, Li C F, Wu X, et al. Reduced graphene oxide modified NiFe-calcinated layered double hydroxides for enhanced photocatalytic removal of methylene blue[J]. Applied Surface Science, 2018, 434: 251-259.
33 Xu W S, Zheng W J, Wang F J, et al. Using iron ion-loaded aminated polyacrylonitrile fiber to efficiently remove wastewater phosphate[J]. Chemical Engineering Journal, 2021, 403: 126349.
[1] 苏晨昱, 杨颖, 宋兴福. 岩盐矿提钾老卤中溴离子选择性电氧化过程研究[J]. 化工学报, 2022, 73(7): 3007-3017.
[2] 李彬, 宋文明, 杨坤龙, 姜爽, 张天永. 水系有机液流电池活性材料的分子工程研究进展[J]. 化工学报, 2022, 73(7): 2806-2818.
[3] 欧阳萍, 张睿, 周剑, 刘海燕, 刘植昌, 徐春明, 孟祥海. 铜铝双金属复合离子液体的电化学行为及电沉积铜机理[J]. 化工学报, 2022, 73(7): 3212-3221.
[4] 宋健斐, 孙立强, 解明, 魏耀东. 旋风分离器内气相旋转流不稳定性的实验研究[J]. 化工学报, 2022, 73(7): 2858-2864.
[5] 张文静, 李静, 魏子栋. 介尺度视角下的电催化:从界面、隔膜到多孔电极[J]. 化工学报, 2022, 73(6): 2289-2305.
[6] 徐珂, 史国强, 薛冬峰. 无机杂化钙钛矿团簇材料:介尺度钙钛矿材料发光性质研究[J]. 化工学报, 2022, 73(6): 2748-2756.
[7] 朱嫣然, 葛亮, 李兴亚, 徐铜文. 三相结构离子交换膜的构筑及应用研究[J]. 化工学报, 2022, 73(6): 2397-2414.
[8] 付雪, 陈婷婷, 陈婷婷, 许映杰. 离子液体的电导性质研究进展[J]. 化工学报, 2022, 73(5): 1883-1893.
[9] 宋超宇, 熊亚选, 张金花, 金宇贺, 药晨华, 王辉祥, 丁玉龙. 污泥焚烧炉渣基定型复合相变储热材料的制备和性能[J]. 化工学报, 2022, 73(5): 2279-2287.
[10] 任玉鑫, 徐润峰, 王婉颖, 陈鹏忠, 彭孝军. 彩色光刻胶用蒽醌染料的合成及稳定性研究[J]. 化工学报, 2022, 73(5): 2251-2261.
[11] 郭行, 韩纹莉, 董晓玲, 李文翠. 调控炭化过程优化煤基硬炭负极储钠性能[J]. 化工学报, 2022, 73(4): 1794-1806.
[12] 刘宇喆, 李成才, 李琳, 王少辉, 刘培慧, 王同华. 活性炭的微结构与超级电容器性能的构效关系[J]. 化工学报, 2022, 73(4): 1807-1816.
[13] 杨珊珊, 姚宇洋, 董云迪, 徐志鹏, 高尚上, 阮慧敏, 沈江南. 基于二苯并-18-冠-6基体改性的K+选择性离子交换膜的制备及性能研究[J]. 化工学报, 2022, 73(4): 1781-1793.
[14] 王毅, 熊启钊, 陈杨, 杨江峰, 李立博, 李晋平. 锆基金属有机骨架材料用于氨吸附性能的研究[J]. 化工学报, 2022, 73(4): 1772-1780.
[15] 赵娟, 吴梦成, 雷惊雷, 李凌杰. 一步水热法制备电解水析氧反应Ni3S2@Mo2S3高效催化剂[J]. 化工学报, 2022, 73(4): 1575-1584.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!