化工学报 ›› 2019, Vol. 70 ›› Issue (3): 1152-1162.DOI: 10.11949/j.issn.0438-1157.20180995
收稿日期:
2018-09-07
修回日期:
2018-12-10
出版日期:
2019-03-05
发布日期:
2019-03-05
通讯作者:
刘会娥
作者简介:
<named-content content-type="corresp-name">王振有</named-content>(1993—),男,硕士研究生,<email>upc_wzy@163.com</email>|刘会娥(1972—),女,博士,教授,<email>liuhuie@upc.edu.cn</email>
基金资助:
Zhenyou WANG(),Hui’e LIU(),Jiameng ZHU,Shuang CHEN,Anran YU
Received:
2018-09-07
Revised:
2018-12-10
Online:
2019-03-05
Published:
2019-03-05
Contact:
Hui’e LIU
摘要:
采用氧化石墨烯(GO)稳定的Pickering乳液为软模板,制备聚乙烯醇-石墨烯气凝胶。探究GO浓度、均质转速、油水比、乙二胺(EDA)和聚乙烯醇(PVA)用量等因素对乳液稳定性、粒径分布及气凝胶成型的影响,发现改变乳液配比可控制乳液粒径的大小,进而对气凝胶的密度和孔隙率进行调控。通过SEM、FT-IR、Raman、XRD对最优制备条件下制得的聚乙烯醇-石墨烯气凝胶(PGA)进行表征,可知GO经水热反应后被还原组装形成三维网络气凝胶结构(PGA)且其孔道直径与乳液粒径基本一致。对PGA进行挤压实验发现其具有轴、径双向挤压回弹性,且重复挤压200次以上PGA仍然具良好的弹性。PGA对纯有机物的吸附量最高可达280 g·g?1,且每克PGA吸附的有机物的体积为恒定值。
中图分类号:
王振有, 刘会娥, 朱佳梦, 陈爽, 于安然. 乳液法制备聚乙烯醇-石墨烯气凝胶及其对纯有机物的吸附[J]. 化工学报, 2019, 70(3): 1152-1162.
Zhenyou WANG, Hui’e LIU, Jiameng ZHU, Shuang CHEN, Anran YU. Preparation of polyvinyl alcohol-graphene aerogel by emulsion method and its adsorption on pure organics[J]. CIESC Journal, 2019, 70(3): 1152-1162.
Sample | CGO/ (mg·ml?1) | R/ (r·min?1) | Oil/water ratio | VEDA∶VGO/% | VPVA∶VGO/% |
---|---|---|---|---|---|
1 | 10 | 16000 | 5∶3 | 2 | 25 |
2 | 8 | 16000 | 5∶3 | 2 | 25 |
3 | 6 | 16000 | 5∶3 | 2 | 25 |
4 | 4 | 16000 | 5∶3 | 2 | 25 |
5 | 10 | 12000 | 5∶3 | 2 | 25 |
6 | 10 | 10000 | 5∶3 | 2 | 25 |
7 | 10 | 16000 | 1∶3 | 2 | 25 |
8 | 10 | 16000 | 2∶3 | 2 | 25 |
9 | 10 | 16000 | 3∶3 | 2 | 25 |
10 | 10 | 16000 | 4∶3 | 2 | 25 |
11 | 10 | 16000 | 6∶3 | 2 | 25 |
12 | 10 | 16000 | 7∶3 | 2 | 25 |
13 | 10 | 16000 | 8∶3 | 2 | 25 |
14 | 10 | 16000 | 9∶3 | 2 | 25 |
15 | 10 | 16000 | 5∶3 | 1 | 25 |
16 | 10 | 16000 | 5∶3 | 3 | 25 |
17 | 10 | 16000 | 5∶3 | 4 | 25 |
18 | 10 | 16000 | 5∶3 | 2 | 15 |
19 | 10 | 16000 | 5∶3 | 2 | 35 |
表1 气凝胶制备条件
Table 1 Aerogel preparation conditions
Sample | CGO/ (mg·ml?1) | R/ (r·min?1) | Oil/water ratio | VEDA∶VGO/% | VPVA∶VGO/% |
---|---|---|---|---|---|
1 | 10 | 16000 | 5∶3 | 2 | 25 |
2 | 8 | 16000 | 5∶3 | 2 | 25 |
3 | 6 | 16000 | 5∶3 | 2 | 25 |
4 | 4 | 16000 | 5∶3 | 2 | 25 |
5 | 10 | 12000 | 5∶3 | 2 | 25 |
6 | 10 | 10000 | 5∶3 | 2 | 25 |
7 | 10 | 16000 | 1∶3 | 2 | 25 |
8 | 10 | 16000 | 2∶3 | 2 | 25 |
9 | 10 | 16000 | 3∶3 | 2 | 25 |
10 | 10 | 16000 | 4∶3 | 2 | 25 |
11 | 10 | 16000 | 6∶3 | 2 | 25 |
12 | 10 | 16000 | 7∶3 | 2 | 25 |
13 | 10 | 16000 | 8∶3 | 2 | 25 |
14 | 10 | 16000 | 9∶3 | 2 | 25 |
15 | 10 | 16000 | 5∶3 | 1 | 25 |
16 | 10 | 16000 | 5∶3 | 3 | 25 |
17 | 10 | 16000 | 5∶3 | 4 | 25 |
18 | 10 | 16000 | 5∶3 | 2 | 15 |
19 | 10 | 16000 | 5∶3 | 2 | 35 |
Oil/water ratio | d/μm | ρ/(mg·cm?3) | η/% |
---|---|---|---|
1∶3 | 20.81 | 9.609 | 99.56 |
2∶3 | 24.66 | 7.279 | 99.67 |
3∶3 | 26.81 | 5.94 | 99.73 |
4∶3 | 27.45 | 5.243 | 99.76 |
5∶3 | 28.64 | 4.565 | 99.79 |
6∶3 | 30.72 | 4.195 | 99.81 |
7∶3 | 37.21 | 5.421 | 99.75 |
8∶3 | 38.94 | 5.313 | 99.76 |
9∶3 | 41.83 | 5.358 | 99.76 |
表2 不同油水比的乳液平均粒径、气凝胶密度、孔隙率
Table 2 Average droplet size of emulsions, density and porosity of aerogel with different oil/water ratios
Oil/water ratio | d/μm | ρ/(mg·cm?3) | η/% |
---|---|---|---|
1∶3 | 20.81 | 9.609 | 99.56 |
2∶3 | 24.66 | 7.279 | 99.67 |
3∶3 | 26.81 | 5.94 | 99.73 |
4∶3 | 27.45 | 5.243 | 99.76 |
5∶3 | 28.64 | 4.565 | 99.79 |
6∶3 | 30.72 | 4.195 | 99.81 |
7∶3 | 37.21 | 5.421 | 99.75 |
8∶3 | 38.94 | 5.313 | 99.76 |
9∶3 | 41.83 | 5.358 | 99.76 |
Organic solvent | ρo①/(g·ml?1) | q/(g·g?1) |
---|---|---|
n-heptane | 0.683 | 126.778 |
diesel | 0.838 | 137.018. |
DMF | 0.945 | 148.259 |
methyl benzoate | 1.09 | 150.096 |
dichloromethane | 1.33 | 230.062 |
carbon tetrachloride | 1.592 | 268.667 |
表3 PGA对不同有机物的吸附数据
Table 3 Adsorption data of PGA on different organic solvents
Organic solvent | ρo①/(g·ml?1) | q/(g·g?1) |
---|---|---|
n-heptane | 0.683 | 126.778 |
diesel | 0.838 | 137.018. |
DMF | 0.945 | 148.259 |
methyl benzoate | 1.09 | 150.096 |
dichloromethane | 1.33 | 230.062 |
carbon tetrachloride | 1.592 | 268.667 |
Slope | Intercept | R2/% |
---|---|---|
167.96 | 0 | 99.81 |
表4 q-ρo线性拟合结果
Table 4 Results of q-ρo linear fitting
Slope | Intercept | R2/% |
---|---|---|
167.96 | 0 | 99.81 |
1 | ZhuQ, ChuY, WangZ, et al. Robust superhydrophobic polyurethane sponge as a highly reusable oil-absorption material[J]. Journal of Materials Chemistry A, 2013, 1(17): 5386-5393. |
2 | XiaoN, ZhouY, LingZ, et al. Synthesis of a carbon nanofiber/carbon foam composite from coal liquefaction residue for the separation of oil and water[J]. Carbon, 2013, 59(4): 530-536. |
3 | WangH J, ZhouA L, PengF, et al. Adsorption characteristic of acidified carbon nanotubes for heavy metal Pb(II) in aqueous solution[J]. Materials Science & Engineering A, 2007, 466(1): 201-206. |
4 | LiY H, WangS, WeiJ, et al. Lead adsorption on carbon nanotubes[J]. Chemical Physics Letters, 2002, 357(3): 263-266. |
5 | FanZ, YanJ, NingG, et al. Oil sorption and recovery by using vertically aligned carbon nanotubes[J]. Carbon, 2010, 48(14): 4197-4200. |
6 | WangH, LinK Y, JingB, et al. Removal of oil droplets from contaminated water using magnetic carbon nanotubes[J]. Water Research, 2013, 47(12): 4198-4205. |
7 | LiuT T, TianS S. Management with leaking oil on the sea and its future development trend[J].China Water Transport, 2006, 4(11): 27-29. |
8 | HuH, ZhaoZ, WanW, et al. Ultralight and highly compressible graphene aerogels[J]. Advanced Materials, 2013, 25(15): 2219-2223. |
9 | WorsleyM A, PauzauskieP J, OlsonT Y, et al. Synthesis of graphene aerogel with high electrical conductivity[J]. Journal of the American Chemical Society, 2010, 132(40): 14067-14069. |
10 | MaoS, LuG, ChenJ. Three-dimensional graphene-based composites for energy applications[J]. Nanoscale, 2015, 7(16): 6924. |
11 | ZhouS, JiangW, WangT H, et al. Highly hydrophobic, compressible, and magnetic polystyrene/Fe3O4/graphene aerogel composite for oil-water separation[J]. Industrial & Engineering Chemistry Research, 2015, 54(20): 5460-5467. |
12 | CongH P, RenX C, WangP, et al. Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process[J]. ACS Nano, 2012, 6(3): 2693-2703. |
13 | SunH, XuZ, GaoC. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels[J]. Advanced Materials, 2013, 25(18): 2554-2560. |
14 | XuL, XiaoG, ChenC, et al. Superhydrophobic and superoleophilic graphene aerogel prepared by facile chemical reduction[J]. Journal of Materials Chemistry A, 2015, 3(14): 7498-7504. |
15 | HongJ Y, SohnE H, ParkS, et al. Highly-efficient and recyclable oil absorbing performance of functionalized graphene aerogel[J]. Chemical Engineering Journal, 2015, 269: 229-235. |
16 | DengW, FangQ, ZhouX, et al. Hydrothermal self-assembly of graphene foams with controllable pore size[J]. RSC Advances, 2016, 6(25): 20843-20849. |
17 | QiuL, LiuJ Z, ChangS L, et al. Biomimetic superelastic graphene-based cellular monoliths[J]. Nature Communications, 2011, 3(4): 1241. |
18 | QianK, LiuF, YangJ, et al. Pore size-optimized periodic mesoporous organosilicas for the enrichment of peptides and polymers[J]. RSC Advances, 2013, 3(34): 14466-14472. |
19 | SilversteinM S. Emulsion-templated polymers: contemporary contemplations[J]. Polymer, 2017, 126: 261-282. |
20 | BinksB P. Particles as surfactants-similarities and differences[J]. Current Opinion in Colloid & Interface Science, 2002, 7(1): 21-41. |
21 | 张琪. 基于二维纳米片的Pickering乳液模板法制备无机/有机复合材料[D]. 广州: 华南理工大学, 2015. |
ZhangQ. Fabrication of inorganic/organic composite materials templated from two-dimensional nanosheets-stabilized Pickering emulsions[D]. Guangzhou: South China University of Technology,2015. | |
22 | YiW, WuH, WangH, et al. Interconnectivity of macroporous hydrogels prepared via graphene oxide-stabilized Pickering high internal phase emulsions[J]. Langmuir, 2016, 32(4): 982-990. |
23 | ZhengZ, ZhengX, WangH, et al. Macroporous grapheme oxide-polymer composite prepared through Pickering high internal phase emulsions[J]. Applied Materials & Interfaces, 2013, 5(16): 7974-7982. |
24 | WanW, ZhaoZ, HughesT C, et al. Graphene oxide liquid crystal Pickering emulsions and their assemblies[J]. Carbon, 2015, 85: 16-23. |
25 | CoteL J, KimF, HuangJ. Langmuir-Blodgett assembly of graphite oxide single layers[J]. Journal of the American Chemical Society, 2009, 131(3): 1043-1049. |
26 | ChenY, WangY, ShiX, et al. Hierarchical and reversible assembly of graphene oxide/polyvinyl alcohol hybrid stabilized Pickering emulsions and their templating for macroporous composite hydrogels[J]. Carbon, 2017, 111: 38-47. |
27 | 马雁冰, 刘会娥, 陈爽, 等. 碳纳米管-石墨烯气凝胶制备及其对水中乳化油的吸附特性[J]. 化工学报, 2018, 69(4): 1508-1517. |
MaY B, LiuH E, ChenS, et al. Facile synthesis of carbon nanotubes-graphene aerogels and its adsorption property for emulsified oil in water[J]. CIESC Journal, 2018, 69(4): 1508-1517. | |
28 | ZhangY, TaoB, XingW, et al. Sandwich-like nitrogen-doped porous carbon/graphene nanoflakes with high-rate capacitive performance[J]. Nanoscale, 2016, 8(15): 78897898. |
29 | ChenJ, ChiF, HuangL, et al. Synthesis of graphene oxide sheets with controlled sizes from sieved graphite flakes[J]. Carbon, 2016, 110: 34-40. |
30 | YangW, GaoH, ZhaoY, et al. Facile preparation of nitrogen-doped graphene sponge as a highly efficient oil absorption material[J]. Materials Letters, 2016, 178: 95-99. |
31 | ShinH J, KimK K, BenayadA, et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance[J]. Advanced Functional Materials, 2009, 19(12): 1987-1992. |
32 | HuH, ZhaoZ, WanW, et al. Ultralight and highly compressible graphene aerogels[J]. Advanced Materials, 2013, 25(15): 2219-2223. |
33 | XuL M, XiaoG Y, ChenC B, et al. Superhydrophobic and superoleophilic graphene aerogel prepared by facile chemical reduction[J]. Journal of Materials Chemistry A, 2015, 3: 7498-7504. |
[1] | 徐文杰, 贾献峰, 王际童, 乔文明, 凌立成, 王任平, 余子舰, 张寅旭. 有机硅/酚醛杂化气凝胶的制备和性能研究[J]. 化工学报, 2023, 74(8): 3572-3583. |
[2] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[3] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[4] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[5] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[6] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[7] | 崔张宁, 胡紫璇, 吴雷, 周军, 叶干, 刘田田, 张秋利, 宋永辉. 可降解纤维素基材料的耐水性能研究进展[J]. 化工学报, 2023, 74(6): 2296-2307. |
[8] | 李振, 张博, 王丽伟. PEG-EG固-固相变材料的制备和性能研究[J]. 化工学报, 2023, 74(6): 2680-2688. |
[9] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[10] | 徐文超, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂E-1310对HCFC-141b水合物生成的影响[J]. 化工学报, 2023, 74(5): 2179-2185. |
[11] | 代佳琳, 毕唯东, 雍玉梅, 陈文强, 莫晗旸, 孙兵, 杨超. 热物性对混合型CPCMs固液相变特性影响模拟研究[J]. 化工学报, 2023, 74(5): 1914-1927. |
[12] | 顾浩, 张福建, 刘珍, 周文轩, 张鹏, 张忠强. 力电耦合作用下多孔石墨烯膜时间维度的脱盐性能及机理研究[J]. 化工学报, 2023, 74(5): 2067-2074. |
[13] | 范坤阳, 杨景兴, 许海波, 连兴容, 何凤梅, 陈聪慧, 李增耀. 遮光剂掺杂SiO2气凝胶传热的统一格子Boltzmann模型研究[J]. 化工学报, 2023, 74(5): 1974-1981. |
[14] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
[15] | 刘瑞琪, 周栖桐, 张悦, 贺莹, 高静, 马丽. 基于金纳米颗粒修饰二氧化硅纳米花的生物传感器构建及应用[J]. 化工学报, 2023, 74(3): 1247-1259. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||