1 |
DuanJ C, TanJ H, YangL, et al. Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing[J]. Atmospheric Research, 2008, 88(1): 25-35.
|
2 |
HuangB B, LeiC, WeiC H, et al. Chlorinated volatile organic compounds (Cl-VOCs) in environment-sources, potential human health impacts, and current remediation technologies[J]. Environment International, 2014, 71(4): 118-138.
|
3 |
LiottaL F. Catalytic oxidation of volatile organic compounds on supported noble metals[J]. Applied Catalysis B: Environmental, 2010, 100(3/4): 403-412.
|
4 |
LiW B, WangJ X, GongH. Catalytic combustion of VOCs on non-noble metal catalysts[J]. Catalysis Today, 2009, 148(1/2): 81-87.
|
5 |
ZhangZ, JiangZ, ShangguanW. Low-temperature catalysis for VOCs removal in technology and application: a state-of-the-art review[J]. Catalysis Today, 2016, 264: 270-278.
|
6 |
KamalM S, RazzakS A, HossainM M. Catalytic oxidation of volatile organic compounds (VOCs) — a review[J]. Atmospheric Environment, 2016, 140: 117-134.
|
7 |
XieY J, YuY Y, GongX Q, et al. Effect of the crystal plane figure on the catalytic performance of MnO2 for the total oxidation of propane[J]. CrystEngComm, 2015, 17(15): 3005-3014.
|
8 |
XieY J, GuoY, GuoY L, et al. A highly effective Ni-modified MnOx catalyst for total oxidation of propane: the promotional role of nickel oxide[J]. RSC Advances, 2016, 6(55): 50228-50237.
|
9 |
XieY J, GuoY, GuoY L, et al. A highly-efficient La-MnOx catalyst for propane combustion: the promotional role of La and the effect of the preparation method[J]. Catalysis Science & Technology, 2016, 6(23): 8222-8233.
|
10 |
HuZ, QiuS, YouY, et al. Hydrothermal synthesis of NiCeOx nanosheets and its application to the total oxidation of propane[J]. Applied Catalysis B: Environmental, 2018, 225: 110-120.
|
11 |
HuZ, WangZ, GuoY, et al. Total oxidation of propane over a Ru/CeO2 catalyst at low temperature[J]. Environmental Science & Technology, 2018, 52(16): 9531-9541.
|
12 |
OkalJ, ZawadzkiM, TylusW. Microstructure characterization and propane oxidation over supported Ru nanoparticles synthesized by the microwave-polyol method[J]. Applied Catalysis B: Environmental, 2011, 101(3/4): 548-559.
|
13 |
OkalJ, ZawadzkiM. Combustion of propane over novel zinc aluminate-supported ruthenium catalysts[J]. Applied Catalysis B: Environmental, 2011, 105(1/2): 182-190.
|
14 |
ZhuZ Z, LuG Z, ZhangZ G, et al. Highly active and stable Co3O4/ZSM-5 catalyst for propane oxidation: effect of the preparation method[J]. ACS Catalysis, 2013, 3(6): 1154-1164.
|
15 |
HuZ, LiuX F, MengD M, et al. Effect of ceria crystal plane on the physicochemical and catalytic properties of Pd/ceria for CO and propane oxidation[J]. ACS Catalysis, 2016, 6(4): 2265-2279.
|
16 |
ZhuZ Z, LuG Z, GuoY, et al. High performance and stability of the Pt-W/ZSM-5 catalyst for the total oxidation of propane: the role of tungsten[J]. Chemcatchem, 2013, 5(8): 2495-2503.
|
17 |
AvilaM S, VignattiC R, ApesteguíaC R, et al. Effect of support on the deep oxidation of propane and propylene on Pt-based catalysts[J]. Chemical Engineering Journal, 2014, 241: 52-59.
|
18 |
ParkJ E, KimK B, SeoK W, et al. Propane combustion over supported Pt catalysts[J]. Research on Chemical Intermediates, 2011, 37(9): 1135-1143.
|
19 |
MailletT, SolleauC, J JrBarbier, et al. Oxidation of carbon monoxide, propene, propane and methane over a Pd/Al2O3 catalyst. Effect of the chemical state of Pd[J]. Applied Catalysis B Environmental, 1997, 14(1/2): 85-95.
|
20 |
MailletT, J JrBarbier, DuprezD. Reactivity of steam in exhaust gas catalysis(Ⅲ): Steam and oxygen/steam conversions of propane on a Pd/Al2O3 catalyst[J]. Applied Catalysis B Environmental, 1996, 9(1/2/3/4): 251-266.
|
21 |
YazawaY, TakagiN, YoshidaH, et al. The support effect on propane combustion over platinum catalyst: control of the oxidation-resistance of platinum by the acid strength of support materials[J]. Applied Catalysis A General, 2002, 233(1/2): 103-112.
|
22 |
GarettoT F, RincónE, ApesteguíaC R. Deep oxidation of propane on Pt-supported catalysts: drastic turnover rate enhancement using zeolite supports[J]. Applied Catalysis B: Environmental, 2004, 48(3): 167-174.
|
23 |
单学蕾, 关乃佳, 曾翔, 等. 不同硅铝比的Cu-ZSM-5/堇青石整体式催化剂的NO分解反应性能[J]. 催化学报, 2001, 22(3): 242-244.
|
|
ShanX L, GuanN J, ZengX, et al. NO decomposition on Cu-ZSM-5/cordierite monolithic catalyst samples with different Si/Al ratios[J]. Chinese Journal of Catalysis, 2001, 22(3): 242-244.
|
24 |
WangS N, CuiY J, LanL, et al. A new monolithic Pt-Pd-Rh motorcycle exhaust catalyst to meet future emission standards[J]. Chinese Journal of Catalysis, 2014, 35(9): 1482-1491.
|
25 |
DeugdR M D, KapteijnF, MoulijnJ A. Using monolithic catalysts for highly selective Fischer-Tropsch synthesis[J]. Catalysis Today, 2003, 79/80(3): 495-501.
|
26 |
SchneiderR, KießlingD, WendtG. Cordierite monolith supported perovskite-type oxides — catalysts for the total oxidation of chlorinated hydrocarbons[J]. Applied Catalysis B: Environmental, 2000, 28(3/4): 187-195.
|
27 |
Colman-LernerE, PelusoM A, SambethJ, et al. Cerium, manganese and cerium/manganese ceramic monolithic catalysts. Study of VOCs and PM removal[J]. Journal of Rare Earths, 2016, 34(7): 675-682.
|
28 |
江浩, 郭杨龙, 张志刚, 等. Ni对单Pd型挥发性有机废气净化催化剂的助催化作用[J]. 无机化学学报, 2006, 22(7): 1210-1214.
|
|
JiangH, GuoY L, ZhangZ G, et al. Promotion of Ni on performance of Pd-only catalyst for destractive removal of volatile organic wastes[J]. Chinese Journal of Inorganic Chemistry, 2006, 22(7): 1210-1214.
|
29 |
MitraB, KunzruD. Washcoating of different zeolites on cordierite monoliths[J]. Journal of the American Ceramic Society, 2008, 91(1): 64-70.
|
30 |
CarvalhoL S, PieckC L, RangelM C, et al. Trimetallic naphtha reforming catalysts(I):Properties of the metal function and influence of the order of addition of the metal precursors on Pt-Re-Sn/γ-Al2O3-Cl[J]. Applied Catalysis A: General, 2004, 269(1/2): 91-103.
|
31 |
ZhuZ Z, LuG Z, GuoY, et al. Influences of Pd precursors and preparation method on the catalytic performances of Pd-only close-coupled catalysts[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(6): 2135-2140.
|
32 |
ElangovanS P, OguraM, ErnstS, et al. A comparative study of zeolites SSZ-33 and MCM-68 for hydrocarbon trap applications[J]. Microporous & Mesoporous Materials, 2006, 96(1/2/3): 210-215.
|