化工学报 ›› 2021, Vol. 72 ›› Issue (1): 116-131.DOI: 10.11949/0438-1157.20201247
收稿日期:
2020-08-30
修回日期:
2020-11-17
出版日期:
2021-01-05
发布日期:
2021-01-05
通讯作者:
段学志
作者简介:
杜威(1996—),男,博士研究生,基金资助:
DU Wei(),ZHANG Zhihua(),DUAN Xuezhi(),ZHOU Xinggui
Received:
2020-08-30
Revised:
2020-11-17
Online:
2021-01-05
Published:
2021-01-05
Contact:
DUAN Xuezhi
摘要:
环氧丙烷(PO)在全球产能最高的35种化学品中,是仅次于聚丙烯的第二大丙烯衍生物,主要用于生产聚醚多元醇、聚氨酯等。相比传统的氯醇法、共氧化法和双氧水直接氧化法(HPPO)等PO生产工艺,丙烯在氢氧混合气中一步环氧化制PO(HOPO)具有工艺简单、选择性高、产物易分离、能耗低等突出优势,是生产PO的理想工艺。重点介绍了丙烯氢氧环氧化反应动力学研究进展,包括主、副反应动力学模型以及催化剂失活模型。总结了基于该过程安全操作的反应器概念设计进展。分析了丙烯氢氧环氧化反应存在的挑战,从副产物生成途径、失活动力学及颗粒催化剂上的动力学等方面展望了可能的研究方向。
中图分类号:
杜威, 张志华, 段学志, 周兴贵. 丙烯氢氧环氧化动力学与反应器概念设计研究进展[J]. 化工学报, 2021, 72(1): 116-131.
DU Wei, ZHANG Zhihua, DUAN Xuezhi, ZHOU Xinggui. A review on kinetics and reactor concept design of propylene epoxidation using H2 and O2[J]. CIESC Journal, 2021, 72(1): 116-131.
45 | Harris J W, Arvay J, Delgass W N, et al. Propylene oxide inhibits propylene epoxidation over Au/TS-1[J]. J. Catal., 2018, 365: 105-114. |
46 | Kanungo S, Ferrandez D M P, D'angelo F N, et al. Kinetic study of propene oxide and water formation in hydro-epoxidation of propene on Au/Ti-SiO2 catalyst[J]. J. Catal., 2016, 338: 284-294. |
47 | Schildberg H. The course of the explosions of combustible/O2/N2 mixtures in vessel-like geometry[J]. Forschung Im Ingenieurwesen-eng. Res., 2009, 73: 33-65. |
48 | Kumar R. Flammability limits of hydrogen-oxygen-diluent mixtures[J]. J. Fire Sci., 1985, 3: 245-262. |
49 | Schröder V, Emonts B, Janßen H, et al. Explosion limits of hydrogen/oxygen mixtures at initial pressures up to 200 bar[J]. Chem. Eng. & Tech., 2004, 27(8): 847-851. |
50 | Lee W S, Akatay M C, Stach E A, et al. Gas-phase epoxidation of propylene in the presence of H2 and O2 over small gold ensembles in uncalcined TS-1[J]. J. Catal., 2014, 313(5): 104-112. |
51 | Lu M, Tang Y, Chen W, et al. Explosion limits estimation and process optimization of direct propylene epoxidation with H2 and O2[J]. Chinese. J. Chem. Eng., 2019, 27(12): 2968-2978. |
52 | Liu Q, Wang T, Qiu J, et al. A novel carbon/ZSM-5 nanocomposite membrane with high performance for oxygen/nitrogen separation[J]. Chem. Comm., 2006, 11: 1230-1232. |
53 | Rebrov E, Croon M H J M, Schouten J C. Design of a microstructured reactor with integrated heat-exchanger for optimum performance of a highly exothermic reaction[J]. Catal. Today, 2001, 69: 183-192. |
54 | Fukuda M, Korematsu K, Sakamoto M. On quenching distance of mixtures of methane and hydrogen with air[J]. Bulletin of JSME, 1981, 24: 1192-1197. |
55 | Yuan Y H, Zhou X G, Wu W, et al. Propylene epoxidation in a microreactor with electric heating[J]. Catal. Today, 2005, 105(3): 544-550. |
56 | Jensen K. Flow chemistry —microreaction technology comes of age[J]. AIChE J., 2017, 63: e15642. |
1 | 张健, 谢妤, 牛志蒙. 环氧丙烷生产技术及市场综述[J]. 化工科技, 2010, 18(3): 75-79. |
Zhang J, Xie Y, Niu Z M. Production technology of epoxypropane and its market analysis[J]. Sci. Tech. Chem. Ind., 2010, 18(3): 75-79. | |
57 | Oyama S T, Zhang X, Lu J, et al. Epoxidation of propylene with H2 and O2 in the explosive regime in a packed-bed catalytic membrane reactor[J]. J. Catal., 2008, 257(1): 1-4. |
58 | Shu-Ichi N S. A one-step conversion of benzene to phenol with a palladium membrane[J]. Science, 2002, 295(5552): 105-107. |
59 | Sasidharan M, Patra A K, Kiyozumi Y, et al. Fabrication, characterization and catalytic oxidation of propylene over TS-1/Au membranes[J]. Chem. Eng. Sci., 2012, 75: 250-255. |
60 | Kertalli E, Perez Ferrandez D M, Schouten J C, et al. Direct synthesis of propene oxide from propene, hydrogen and oxygen in a catalytic membrane reactor[J]. Ind. Eng. Chem. Res., 2014, 53(42): 16275-16284. |
61 | Adhikari S, Fernando S. Hydrogen membrane separation techniques[J]. Ind. Eng. Chem. Res., 2006, 45(3): 875-881. |
62 | Zhang Y, Wu Z, Hong Z, et al. Hydrogen-selective zeolite membrane reactor for low temperature water gas shift reaction[J]. Chem. Eng. J., 2012, 197: 314-321. |
63 | Lu G Q, Diniz Da Costa J C, Duke M, et al. Inorganic membranes for hydrogen production and purification: a critical review and perspective[J]. J. Colloid Interface Sci., 2007, 314(2): 589-603. |
64 | Iulianelli A, Liguori S, Wilcox J, et al. Advances on methane steam reforming to produce hydrogen through membrane reactors technology: a review[J]. Catal. Rev., 2016, 58(1): 1-35. |
65 | Gao J, Lun Y, Hu Y, et al. The effect of A-site element on CO2 resistance of O2-selective La-based perovskite hollow fibers[J]. J. Ind. Eng. Chem., 2017, 53: 276-284. |
66 | Zhang P, Tong J, Huang K. Self-formed, mixed-conducting, triple-phase membrane for efficient CO2/O2 capture from flue gas and in situ dry-oxy methane reforming[J]. ACS Sustain. Chem. & Eng., 2018, 6(11): 14162-14169. |
67 | Dixon A G, Moser W R, Ma Y H. Waste reduction and recovery using O2-permeable membrane reactors[J]. Ind. Eng. Chem. Res., 1994, 33(12): 3015-3024. |
68 | Tan X, Li K. Design of mixed conducting ceramic membranes/reactors for the partial oxidation of methane to syngas[J]. AIChE J., 2009, 55(10): 2675-2685. |
69 | Tan X, Li K. Fluidized bed membrane reactors[M]// Inorganic Membrane Reactors: Fundamentals and Applications. New York: John Wiley & Sons Inc., 2015: 215-226. |
70 | Lu M, Wang G, Zhang Z, et al. Microporous inert membrane packed-bed reactor for propylene epoxidation with hydrogen and oxygen: modelling and simulation[J]. Chem. Eng. Process., 2017, 122: 425-433. |
2 | 薛金召, 牛小娟, 汪希领,等. 国内环氧丙烷市场分析及技术进展[J]. 化工进展, 2015, 34(9): 3500-3506. |
Xue J Z, Niu X J, Wang X L, et al. Market analysis and technology progress of domestic propylene oxide[J]. Chem. Ind. Eng. Progress, 2015, 34(9): 3500-3506. | |
3 | 2019中国环氧丙烷产业链年度报告[R]. 上海: 亚化咨询, 2019. |
Annual report of China propylene oxide industrial chain in 2019[R]. Shanghai: ASIACHEM, 2019. | |
4 | Nijhuis T A, Makkee M, Moulijn J A, et al. The production of propene oxide: catalytic processes and recent developments[J]. Ind. Eng. Chem. Res., 2006, 45(10): 3447-3459. |
5 | Russo V, Tesser R, Santacesaria E, et al. Chemical and technical aspects of propene oxide production via hydrogen peroxide (HPPO Process)[J]. Ind. Eng. Chem. Res., 2012, 52(3): 1168-1178. |
6 | Min B K, Friend C M. Heterogeneous gold-based catalysis for green chemistry: low-temperature CO oxidation and propene oxidation[J]. Chem. Rev., 2007, 107(6): 2709-2724. |
7 | 宋钊宁, 冯翔, 刘熠斌,等. 丙烯直接气相临氢环氧化催化剂结构调控和催化剂构-效关系研究进展[J]. 化学进展, 2016, 28(12): 1762-1773. |
Song Z N, Feng X, Liu Y B, et al. Advances in manipulation of catalysts structure and relationship of structure-performance for direct propene epoxidation with H2 and O2[J]. Progress in Chem., 2016, 28(12): 1752-1773. | |
8 | Schmidt F, Bernhard M, Morell H, et al. HPPO process technology a novel route to propylene oxide without coproducts[J]. Chem. Today, 2014, 32: 31-35. |
9 | Sinha A K, Seelan S, Tsubota S, et al. A three-dimensional mesoporous titanosilicate support for gold nanoparticles: vapor-phase epoxidation of propene with high conversion[J]. Angew. Chem. Int. Ed., 2004, 43(12): 1546-1548. |
10 | Chowdhury B, Bravo-Suárez J J, Daté M, et al. Trimethylamine as a gas-phase promoter: highly efficient epoxidation of propylene over supported gold catalysts[J]. Angew. Chem. Int. Ed., 2006, 45(3): 412-415. |
11 | Huang J, Akita T, Faye J, et al. Propene epoxidation with dioxygen catalyzed by gold clusters[J]. Angew. Chem. Int. Ed., 2009, 48(42): 7862-7866. |
12 | Haruta M, Uphade B S, Tsubota S, et al. Selective oxidation of propylene over gold deposited on titanium-based oxides[J]. Res. Chem. Interm., 1998, 24(3): 329-336. |
13 | Chowdhury B, Bravo-Suárez J J, Mimura N, et al. In situ UV-vis and EPR study on the formation of hydroperoxide species during direct gas phase propylene epoxidation over Au/Ti-SiO2 Catalyst[J]. J. Phys. Chem. B, 2006, 110(46): 22995-22999. |
14 | Suárez J J B, Bando K K, Lu J, et al. Transient technique for identification of true reaction intermediates: hydroperoxide species in propylene epoxidation on gold/titanosilicate catalysts by X-ray absorption fine structure spectroscopy[J]. J. Phys. Chem. C, 2008, 112(4): 1115-1123. |
15 | Chen J, Halin S J, Pidko E A, et al. Enhancement of catalyst performance in the direct propene epoxidation: a study into gold–titanium synergy[J]. Chem. Cat. Chem., 2013, 5(2): 467-478. |
16 | Ishida T, Koga H, Okumura M, et al. Advances in gold catalysis and understanding the catalytic mechanism[J]. Chem. Rec., 2016, 16(5): 2278-2293. |
17 | Kalvachev Y A, Hayashi T, Tsubota S, et al. Vapor-phase selective oxidation of aliphatic hydrocarbons over gold deposited on mesoporous titanium silicates in the Co-presence of oxygen and hydrogen[J]. J. Catal., 1999, 186(1): 228-233. |
18 | Uphade B S, Akita T, Nakamura T, et al. Vapor-phase epoxidation of propene using H2 and O2 over Au/Ti-MCM-48[J]. J. Catal., 2002, 209(2): 331-340. |
19 | Qi C, Akita T, Okumura M, et al. Effect of surface chemical properties and texture of mesoporous titanosilicates on direct vapor-phase epoxidation of propylene over Au catalysts at high reaction temperature[J]. Appl. Catal., A, 2003, 253(1): 75-89. |
20 | Sinha A K, Seelan S, Akita T, et al. Vapor phase propylene epoxidation over Au/Ti-MCM-41 catalysts prepared by different Ti incorporation modes[J]. Appl. Catal., A, 2003, 240(1): 243-252. |
21 | Mul G, Zwijnenburg A, van der Linden B, et al. Stability and selectivity of Au/TiO2 and Au/TiO2/SiO2 catalysts in propene epoxidation: an in situ FT-IR Study[J]. J. Catal., 2001, 201(1): 128-137. |
22 | Lee W S, Akatay M C, Delgass W N, et al. Reproducible preparation of Au/TS-1 with high reaction rate for gas phase epoxidation of propylene[J]. J. Catal., 2012, 287: 178-189. |
23 | Lee W S, Akatay M C, Stach E A, et al. Enhanced reaction rate for gas-phase epoxidation of propylene using H2 and O2 by Cs promotion of Au/TS-1[J]. J. Catal., 2013, 308(4): 98-113. |
24 | Huang J, Takei T, Akita T, et al. Gold clusters supported on alkaline treated TS-1 for highly efficient propene epoxidation with O2 and H2[J]. Appl. Catal., B, 2010, 95(3): 430-438. |
25 | Feng X, Duan X, Zhou X G, et al. Au nanoparticles deposited on the external surfaces of TS-1: enhanced stability and activity for direct propylene epoxidation with H2 and O2[J]. Appl. Catal., B, 2014, 150/151(9): 396-401. |
26 | Zhan G, Du M, Sun D, et al. Vapor-phase propylene epoxidation with H2/O2 over bioreduction Au/TS-1 catalysts: synthesis, characterization, and optimization[J]. Ind. Eng. Chem. Res., 2011, 50(15): 9019-9026. |
27 | Zhang Z, Zhao X, Zhou X G, et al. Uncalcined TS-2 immobilized Au nanoparticles as a bifunctional catalyst to boost direct propylene epoxidation with H2 and O2[J]. AIChE J., 2020, 66(2): e16815. |
28 | Qian G, Yuan Y H, Zhou X G, et al. Vapor phase propylene epoxidation kinetics[M]//Rhee H K, Nam I S, Park J M. Studies in Surface Science and Catalysis. Amsterdam: Elsevier, 2006: 333-336. |
29 | Chan K H, Tse R. Determination of the Arrhenius activation energy using a temperature-programmed flow reactor[J]. J. Chem. Edu., 1984, 61(6): 547. |
30 | Nijhuis T A, Gardner T Q, Weckhuysen B M. Modeling of kinetics and deactivation in the direct epoxidation of propene over gold–titania catalysts[J]. J. Catal., 2005, 236(1): 153-163. |
31 | Nijhuis T A, Weckhuysen B M. The direct epoxidation of propene over gold-titania catalysts-a study into the kinetic mechanism and deactivation[J]. Catal. Today, 2006, 117(1): 84-89. |
32 | Nijhuis T A, Visser T, Weckhuysen B M. The role of gold in gold-titania epoxidation catalysts[J]. Angew. Chem. Int. Ed., 2005, 44(7): 1115-1118. |
33 | Nijhuis T A, Visser T, Weckhuysen B M. Mechanistic study into the direct epoxidation of propene over gold/titania catalysts[J]. J. Phys. Chem. B, 2005, 109(41): 19309-19319. |
34 | Nijhuis T A, Sacaliuc E, Beale A M, et al. Spectroscopic evidence for the adsorption of propene on gold nanoparticles during the hydro-epoxidation of propene[J]. J. Catal., 2008, 258(1): 256-264. |
35 | Nijhuis T A, Sacaliuc-Parvulescu E, Govender N S, et al. The role of support oxygen in the epoxidation of propene over gold–titania catalysts investigated by isotopic transient kinetics[J]. J. Catal., 2009, 265(2): 161-169. |
36 | Nijhuis T A, Chen J, Kriescher S M A, et al. The direct epoxidation of propene in the explosive regime in a microreactor—a study into the reaction kinetics[J]. Ind. Eng. Chem. Res., 2010, 49(21): 10479-10485. |
37 | Chen J, Halin S J, Nijhuis T A, et al. Kinetic study of propylene epoxidation with H2 and O2 over Au/Ti-SiO2 in the explosive regime[J]. J. Stat. Phys., 2011, 152(2/3/4): 1041-1104. |
38 | Taylor B, Lauterbach J, Delgass W N, et al. Reaction kinetic analysis of the gas-phase epoxidation of propylene over Au/TS-1[J]. J. Catal., 2006, 242(1): 142-152. |
39 | Joshi A M, Delgass W N, Thomson K T. Mechanistic implications of aun/ti-lattice proximity for propylene epoxidation[J]. J. Phys. Chem. C, 2007, 111(22): 7841-7844. |
40 | Wells D H, Delgass W N, Thomson K T. Evidence of defect-promoted reactivity for epoxidation of propylene in titanosilicate (TS-1) catalysts: a DFT study[J]. J. Am. Chem. Soc., 2004, 126(9): 2956-2962. |
41 | Joshi A M, Delgass W N, Thomson K T. Partial oxidation of propylene to propylene oxide over a neutral gold trimer in the gas phase: a density functional theory study[J]. J. Phys. Chem. B, 2006, 110(6): 2572-2581. |
42 | Bravo-Suárez J J, Lu J, Oyama S T, et al. Kinetic study of propylene epoxidation with H2 and O2 over a gold/mesoporous titanosilicate catalyst[J]. J. Phys. Chem. C, 2007, 111(46): 17427-17436. |
43 | Lu J, Zhang X, Bravo-Suárez J J, et al. Kinetics of propylene epoxidation using H2 and O2 over a gold/mesoporous titanosilicate catalyst[J]. Catal. Today, 2007, 123(1/2/3/4): 189-197. |
44 | Wang G, Cao Y, Zhang Z, et al. Surface engineering and kinetics behaviors of Au/uncalcined TS-1 catalysts for propylene epoxidation with H2 and O2[J]. Ind. Eng. Chem. Res., 2019, 58(37): 17300-17307. |
[1] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[2] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[3] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[4] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[5] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[6] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[7] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[8] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[9] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[10] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[11] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[12] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[13] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[14] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
[15] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||