1 |
LuC, WeyM, ChenL. Application of polyol process to prepare AC-supported nanocatalyst for VOC oxidation[J]. Applied Catalysis A: General, 2007, 325(1): 163-174.
|
2 |
AzizA, ParkH, KimS, et al. Phenol and ammonium removal by using Fe-ZSM-5 synthesized by ammonium citrate iron source [J]. International Journal of Environmental Science and Technology, 2016, 13(12): 2805-2816.
|
3 |
ScirèS, LiottaL F. Supported gold catalysts for the total oxidation of volatile organic compounds[J]. Applied Catalysis B: Environmental, 2012, 125(2): 222-246.
|
4 |
LiaoY, JiaL, ChenR, et al. Charcoal-supported catalyst with enhanced thermal-stability for the catalytic combustion of volatile organic compounds[J]. Applied Catalysis A: General, 2016, 522: 32-39.
|
5 |
芮泽宝, 纪红兵. 有机废气催化燃烧过程中多尺度效应和催化剂设计[J]. 化工学报, 2018, 69(1): 317-326.
|
|
RuiZ B, JiH B. Multi-scale effect and catalyst design in catalytic combustion of organic waste gas[J]. CIESC Journal, 2018, 69(1): 317-326.
|
6 |
TidahyH, SiffertS, LamonierJ, et al. New Pd/hierarchical macro-mesoporous ZrO2, TiO2 and ZrO2-TiO2 catalysts for VOCs total oxidation[J]. Applied Catalysis A: General, 2006, 310: 61-69.
|
7 |
GilA, VicentemA, LambertJ F, et al. Platinum catalysts supported on Al-pillared clays: application to the catalytic combustion of acetone and methyl-ethyl-ketone[J]. Catalysis Today, 2001, 68(1/2/3): 41-51.
|
8 |
PozanG S. Effect of support on the catalytic activity of manganese oxide catalysts for toluene combustion[J]. Journal of Hazardous Materials, 2012, 221: 124-130.
|
9 |
TangW, DengY, LiW, et al. Importance of porous structure and synergistic effect on the catalytic oxidation activities over hierarchical Mn-Ni composite oxides[J]. Catalysis Science & Technology, 2016, 6(6): 1710-1718.
|
10 |
HuC, ZhuQ, JiangZ, et al. Catalytic combustion of dilute acetone over Cu-doped ceria catalysts[J]. Chemical Engineering Journal, 2009, 152(2/3): 583-590.
|
11 |
PanH, LiZ, XiaQ, et al. Catalytic activity of copper based catalysts pretreated with H2 reduction for catalytic combustion of styrene[J]. Catalysis Communications, 2009, 10(8): 1166-1169.
|
12 |
SedjameH, FontaineC, LafayeG, et al. On the promoting effect of the addition of ceria to platinum based alumina catalysts for VOCs oxidation[J]. Applied Catalysis B: Environmental, 2014, 144: 233-242.
|
13 |
HosseiniM, HaghighiM, KahforoushanD, et al. Sono-dispersion of ceria and palladium in preparation and characterization of Pd/Al2O3-clinoptilolite-CeO2 nanocatalyst for treatment of polluted air via low temperature VOC oxidation[J]. Process Safety and Environmental Protection, 2017, 106: 284-293.
|
14 |
LiuY, DaiH, DengJ, et al. Mesoporous Co3O4-supported gold nanocatalysts: highly active for the oxidation of carbon monoxide, benzene, toluene, and o-xylene[J]. Journal of Catalysis, 2014, 309: 408-418.
|
15 |
Bal ZhinimaevB S, KovalyovE V, KaichevV V, et al. Catalytic abatement of VOC over novel Pt fiber glass catalysts[J]. Topics in Catalysis, 2017, 60(1/2): 73-82.
|
16 |
BeckI E, BukhtiyarovV I, ParkharukovI Y, et al. Platinum nanoparticles on Al2O3: correlation between the particle size and activity in total methane oxidation[J]. Journal of Catalysis, 2009, 268(1): 60-67.
|
17 |
KomvokisV G, MartiM, DelimitisA, et al. Catalytic decomposition of N2O over highly active supported Ru nanoparticles (≤3 nm) prepared by chemical reduction with ethylene glycol[J]. Applied Catalysis B: Environmental, 2011, 103(1/2): 62-71.
|
18 |
HuangS, ZhangC, HeH. Complete oxidation of o-xylene over Pd/Al2O3 catalyst at low temperature[J]. Catalysis Today, 2008, 139(1/2): 15-23.
|
19 |
胡凌霄, 王莲, 王飞, 等. Pd/γ-Al2O3催化剂催化氧化邻-二甲苯[J]. 物理化学学报, 2017, 33(8): 1681-1688.
|
|
HuL X, WangL, WangF, et al. Catalytic oxidation of o-xylene over Pd/ γ -Al2O3 catalysts[J]. Acta Physico-Chimica Sinica, 2017, 33 (8): 1681-1688.
|
20 |
ÖztürkS, KösemenA, KösemenZ A, et al. Electrochemically growth of Pd doped ZnO nanorods on QCM for room temperature VOC sensors[J]. Sensors and Actuators B: Chemical, 2016, 222: 280-289.
|
21 |
KimJ, ParlJ, KimH S, et al. A new route to preparation of palladium catalysts for VOC combustion[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(1): 425-428.
|
22 |
OńskaM J, KrólA, C E K, et al. Zeolites Y modified with palladium as effective catalysts for low-temperature methanol incineration[J]. Applied Catalysis B: Environmental, 2015, 166: 353-365.
|
23 |
HuangS, ZhangC, HeH. Effect of pretreatment on Pd/Al2O3 catalyst for catalytic oxidation of o-xylene at low temperature[J].Journal of Environmental Sciences, 2013, 25(6): 1206-1212.
|
24 |
BarakatT, RookeJ C, CousinR, et al. Investigation of the elimination of VOC mixtures over a Pd-loaded V-doped TiO2 support[J]. New Journal of Chemistry, 2014, 38(5): 266-274.
|
25 |
DemoulinO, RupprechterG, SeunierI, et al. Investigation of parameters influencing the activation of a Pd/γ-Alumina catalyst during methane combustion[J]. The Journal of Physical Chemistry B, 2005, 109(43): 20454-20462.
|
26 |
PadillaJ M, Del AngelG, NavarreteJ. Improved Pd/γ-Al2O3-Ce catalysts for benzene combustion[J]. Catalysis Today, 2008, 133/134/135: 541-547.
|
27 |
KimS C, ShimW G. Properties and performance of Pd based catalysts for catalytic oxidation of volatile organic compounds[J]. Applied Catalysis B: Environmental, 2009, 92(3/4): 429-436.
|
28 |
HuangH, LeungD Y C. Complete oxidation of formaldehyde at room temperature using TiO2 supported metallic Pd nanoparticles[J]. ACS Catalysis, 2011, 1(4): 348-354.
|
29 |
WangY, ZhangC, HeH. Insight into the role of Pd state on Pd-based catalysts in o-xylene oxidation at low temperature[J]. ChemCatChem, 2018, 10(5): 998-1004.
|
30 |
夏燎原, 吴义强, 胡云楚. 锡掺杂介孔分子筛在木材阻燃中的烟气转化作用[J]. 无机材料学报, 2013, 28(5): 532-536.
|
|
XiaL Y, WuY Q, HuC Y. Study on smoke catalytic conversion by Sn-substituted mesoporous silica composite in wood fire retardance[J]. Journal of Inorganic Materials, 2013, 28(5): 532-536.
|
31 |
叶青, 霍飞飞, 王海平, 等. xAu/α-MnO2催化剂的结构及催化氧化VOCs气体性能[J]. 高等学校化学学报, 2013, 34(5): 1187-1194.
|
|
YeQ, HuoF F, WangH P, et al. Structure of xAu/α-MnO2 catalyst and performance of catalytic oxidation of VOCs[J]. Chemical Journal of Chinese Universities, 2013, 34(5): 1187-1194.
|
32 |
ShimW G, LeeJ W, KimS C. Analysis of catalytic oxidation of aromatic hydrocarbons over supported palladium catalyst with different pretreatments based on heterogeneous adsorption properties[J]. Applied Catalysis B: Environmental, 2008, 84(1/2): 133-141.
|
33 |
KundakovicL, Flytzani-StephanoulosM. Reduction characteristics of copper oxide in cerium and zirconium oxide systems[J]. Applied Catalysis A: General, 1998, 171(1): 13-29.
|
34 |
陈静, 张庆红, 方文浩, 等. 水滑石负载钯催化剂上的醇无氧脱氢反应[J]. 催化学报, 2010, 31(8): 1061-1070.
|
|
ChenJ, ZhangQ H, FangW H, et al. Oxidant-free dehydrogenation of alcohols over hydrotalcite-supported palladium catalysts[J]. Chinese Journal of Catalysis, 2010, 31(8): 1061-1070.
|
35 |
HiraiH, ChawanyaH, ToshimaN. Colloidal palladium protected with poly (N-vinyl-2-pyrrolidone) for selective hydrogenation of cyclopentadiene[J]. Reactive Polymers, 1985, 3(2): 127-141.
|
36 |
RobertsG W, SatterfieldC N. Effectiveness factor for porous catalysts Langmuir-Hinshelwood kinetic expressions [J]. Industrial & Engineering Chemistry Fundamentals, 1966, 5(3): 317-325.
|
37 |
KratzerP, BreningW. Highly excited molecules from Eley-Rideal reactions[J]. Surface Science Letters, 1991, 254(1/2/3): 275-280.
|
38 |
SaqlainM A, HussainA, SiddiqM, et al. A DFT+U study of the mars van Krevelen mechanism of CO oxidation on Au/TiO2 catalysts[J]. Applied Catalysis A: General, 2016, 519: 27-33.
|