化工学报 ›› 2021, Vol. 72 ›› Issue (10): 5150-5158.DOI: 10.11949/0438-1157.20210519
收稿日期:
2021-04-15
修回日期:
2021-06-30
出版日期:
2021-10-05
发布日期:
2021-10-05
通讯作者:
段学志
作者简介:
王刚(1992—),男,博士研究生,基金资助:
Gang WANG(),Xuezhi DUAN(),Weikang YUAN,Xinggui ZHOU
Received:
2021-04-15
Revised:
2021-06-30
Online:
2021-10-05
Published:
2021-10-05
Contact:
Xuezhi DUAN
摘要:
丙烯氢氧环氧化一步法制备环氧丙烷(PO)相比于传统的PO工业生产方法在经济和环保方面具有不可比拟的优势。Au/TS-1双功能催化剂在该反应中展现出较优的PO性能,针对其中TS-1催化PO开环异构生成副产物进行了研究,结合PO在堵孔TS-1分子筛(TS-1-B)和Au/TS-1-B催化剂上的反应性能和红外表征结果,采用理论计算探究了Ti-Defect位点上丙醛和丙酮的生成路径以及涉及的能量变化。结果显示PO在TS-1上的异构化主要经历碳氧键断裂和氢原子转移重排两个过渡态,以及具有五元环结构的双配位丙氧基物种中间体。相比于丙醛,丙酮由于生成过程中氢原子重排的过渡态能垒较高而具有更低的异构化选择性。所揭示的TS-1上PO吸附及异构化反应机制将为钛基丙烯环氧化催化剂的结构改性以增强PO脱附从而提高PO选择性提供理论依据。
中图分类号:
王刚,段学志,袁渭康,周兴贵. 钛硅分子筛TS-1催化环氧丙烷异构反应的机理探究[J]. 化工学报, 2021, 72(10): 5150-5158.
Gang WANG,Xuezhi DUAN,Weikang YUAN,Xinggui ZHOU. Mechanistic insights into catalytic isomerization of propylene oxide over TS-1[J]. CIESC Journal, 2021, 72(10): 5150-5158.
键类型 | Ti—O键键长 /nm | |
---|---|---|
计算值 | 实验值 | |
Ti—O(1) | 0.181 | |
Ti—O(2) | 0.176 | |
Ti—O(3) | 0.182 | |
Ti—O(4) | 0.175 | |
平均值 | 0.179 | 0.1793±0.0007[ |
表1 TS-1模型中Ti—O键键长与实验值比较
Table 1 Comparison of Ti—O bond lengths between calculated and experimental values
键类型 | Ti—O键键长 /nm | |
---|---|---|
计算值 | 实验值 | |
Ti—O(1) | 0.181 | |
Ti—O(2) | 0.176 | |
Ti—O(3) | 0.182 | |
Ti—O(4) | 0.175 | |
平均值 | 0.179 | 0.1793±0.0007[ |
样品 | 处理温度/℃ | SBET/ (m2?g-1) | Vmicro/ (cm3?g-1) | Vtotal/ (cm3?g-1) |
---|---|---|---|---|
TS-1-B-100 | 100 | 39 | 0.01 | 0.02 |
TS-1-O-550 | 550 | 475 | 0.21 | 0.25 |
表2 TS-1-B和TS-1-O的BET比表面积和孔容参数
Table 2 BET surface area and pore parameters of TS-1-B and TS-1-O
样品 | 处理温度/℃ | SBET/ (m2?g-1) | Vmicro/ (cm3?g-1) | Vtotal/ (cm3?g-1) |
---|---|---|---|---|
TS-1-B-100 | 100 | 39 | 0.01 | 0.02 |
TS-1-O-550 | 550 | 475 | 0.21 | 0.25 |
1 | Nijhuis T A, Makkee M, Moulijn J A, et al. The production of propene oxide: catalytic processes and recent developments[J]. Industrial & Engineering Chemistry Research, 2006, 45(10): 3447-3459. |
2 | Teržan J, Huš M, Likozar B, et al. Propylene epoxidation using molecular oxygen over copper- and silver-based catalysts: a review[J]. ACS Catalysis, 2020, 10(22): 13415-13436. |
3 | Hayashi T, Tanaka K, Haruta M. Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen[J]. Journal of Catalysis, 1998, 178(2): 566-575. |
4 | 宋钊宁, 冯翔, 刘熠斌, 等. 丙烯直接气相临氢环氧化催化剂结构调控和催化剂构-效关系研究进展[J]. 化学进展, 2016, 28(12): 1762-1773. |
Song Z N, Feng X, Liu Y B, et al. Advances in manipulation of catalyst structure and relationship of Structure-Performance for Direct Propene Epoxidation with H2 and O2[J]. Progress in Chemistry, 2016, 28(12): 1762-1773. | |
5 | Sinha A K, Seelan S, Tsubota S, et al. A three-dimensional mesoporous titanosilicate support for gold nanoparticles: vapor-phase epoxidation of propene with high conversion[J]. Angewandte Chemie International Edition, 2004, 43(12): 1546-1548. |
6 | Chowdhury B, Bravo-Suárez J J, Daté M, et al. Trimethylamine as a gas-phase promoter: highly efficient epoxidation of propylene over supported gold catalysts[J]. Angewandte Chemie International Edition, 2006, 45(3): 412-415. |
7 | 杜威, 张志华, 段学志, 等. 丙烯氢氧环氧化动力学与反应器概念设计研究进展[J]. 化工学报, 2021, 72(1): 116-131. |
Du W, Zhang Z H, Duan X Zet al. A review on kinetics and reactor concept design of propylene epoxidation using H2 and O2[J]. 2021, 72(1): 116-131. | |
8 | Zhan G W, Du M M, Sun D H, et al. Vapor-phase propylene epoxidation with H2/O2 over bioreduction Au/TS-1 catalysts: synthesis, characterization, and optimization[J]. Industrial & Engineering Chemistry Research, 2011, 50(15): 9019-9026. |
9 | Lee W S, Cem Akatay M, Stach E A, et al. Reproducible preparation of Au/TS-1 with high reaction rate for gas phase epoxidation of propylene[J]. Journal of Catalysis, 2012, 287: 178-189. |
10 | Lu J Q, Li N, Pan X R, et al. Direct propylene epoxidation with H2 and O2 over In modified Au/TS-1 catalysts[J]. Catalysis Communications, 2012, 28: 179-182. |
11 | Lee W S, Cem Akatay M, Stach E A, et al. Enhanced reaction rate for gas-phase epoxidation of propylene using H2 and O2 by Cs promotion of Au/TS-1[J]. Journal of Catalysis, 2013, 308: 98-113. |
12 | Lu J Q, Zhang X M, Bravo-Suárez J J, et al. Effect of composition and promoters in Au/TS-1 catalysts for direct propylene epoxidation using H2 and O2[J]. Catalysis Today, 2009, 147(3/4): 186-195. |
13 | Feng X, Duan X Z, Qian G, et al. Au nanoparticles deposited on the external surfaces of TS-1: enhanced stability and activity for direct propylene epoxidation with H2 and O2[J]. Applied Catalysis B: Environmental, 2014, 150/151: 396-401. |
14 | Feng X, Duan X Z, Yang J, et al. Au/uncalcined TS-1 catalysts for direct propene epoxidation with H2 and O2: effects of Si/Ti molar ratio and Au loading[J]. Chemical Engineering Journal, 2015, 278: 234-239. |
15 | Wang G, Cao Y Q, Zhang Z H, et al. Surface engineering and kinetics behaviors of Au/uncalcined TS-1 catalysts for propylene epoxidation with H2 and O2[J]. Industrial & Engineering Chemistry Research, 2019, 58:17300-17307. |
16 | Lee W S, Cem Akatay M, Stach E A, et al. Gas-phase epoxidation of propylene in the presence of H2 and O2 over small gold ensembles in uncalcined TS-1[J]. Journal of Catalysis, 2014, 313: 104-112. |
17 | Stangland E E, Stavens K B, Andres R P, et al. Characterization of gold-titania catalysts via oxidation of propylene to propylene oxide[J]. Journal of Catalysis, 2000, 191(2): 332-347. |
18 | Sinha A K, Seelan S, Akita T, et al. Vapor phase propylene epoxidation over Au/Ti-MCM-41 catalysts prepared by different Ti incorporation modes[J]. Applied Catalysis A: General, 2003, 240(1/2): 243-252. |
19 | Mul G, Zwijnenburg A, van der Linden B, et al. Stability and selectivity of Au/TiO2 and Au/TiO2/SiO2 catalysts in propene epoxidation: an in situ FT-IR study[J]. Journal of Catalysis, 2001, 201(1): 128-137. |
20 | Namuangruk S, Khongpracha P, Pantu P, et al. Structures and reaction mechanisms of propene oxide isomerization on H-ZSM-5: an ONIOM study[J]. The Journal of Physical Chemistry B, 2006, 110(51): 25950-25957. |
21 | Wells D H, Delgass W N, Thomson K T. Evidence of defect-promoted reactivity for epoxidation of propylene in titanosilicate (TS-1) catalysts: a DFT study[J]. Journal of the American Chemical Society, 2004, 126(9): 2956-2962. |
22 | Li M Z, Yan X Y, Zhu M Y, et al. Insight into the stereoselectivity of TS-1 in epoxidation of cis/trans-2-hexene: a computational study[J]. Catalysis Science & Technology, 2018, 8(19): 4975-4984. |
23 | Wells D H, Joshi A M, Delgass W N, et al. A quantum chemical study of comparison of various propylene epoxidation mechanisms using H2O2 and TS-1 catalyst[J]. The Journal of Physical Chemistry. B, 2006, 110(30): 14627-14639. |
24 | Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory[J]. Journal of Computational Chemistry, 2011, 32(7): 1456-1465. |
25 | Li M Z, Wang Y C, Wu Y, et al. Structure and catalytic activity of a newly proposed titanium species in a Ti-YNU-1 zeolite: a density functional theory study[J]. Catalysis Science & Technology, 2017, 7(18): 4105-4114. |
26 | Panyaburapa W, Nanok T, Limtrakul J. Epoxidation reaction of unsaturated hydrocarbons with H2O2 over defect TS-1 investigated by ONIOM method: formation of active sites and reaction mechanisms[J]. The Journal of Physical Chemistry C, 2007, 111(8): 3433-3441. |
27 | Lamberti C, Bordiga S, Arduino D, et al. Evidence of the presence of two different framework Ti(Ⅳ) species in Ti-Silicalite-1 in vacuo conditions: an EXAFS and a photoluminescence study[J]. The Journal of Physical Chemistry B, 1998, 102(33): 6382-6390. |
28 | Deng X J, Wang Y N, Shen L, et al. Low-cost synthesis of titanium silicalite-1 (TS-1) with highly catalytic oxidation performance through a controlled hydrolysis process[J]. Industrial & Engineering Chemistry Research, 2013, 52(3): 1190-1196. |
29 | Zuo Y, Wang X S, Guo X W. Synthesis of titanium silicalite-1 with small crystal size by using mother liquor of titanium silicalite-1 as seeds (Ⅱ): Influence of synthesis conditions on properties of titanium silicalite-1[J]. Microporous and Mesoporous Materials, 2012, 162: 105-114. |
30 | Elango M, Maciel G S, Palazzetti F, et al. Quantum chemistry of C3H6O molecules: structure and stability, isomerization pathways, and chirality changing mechanisms[J]. The Journal of Physical Chemistry. A, 2010, 114(36): 9864-9874. |
31 | Zwijnenburg A, Makkee M, Moulijn J A. Increasing the low propene epoxidation product yield of gold/titania-based catalysts[J]. Applied Catalysis A: General, 2004, 270(1/2): 49-56. |
32 | Panayotov D, McEntee M, Burrows S, et al. Infrared studies of propene and propene oxide adsorption on nanoparticulate Au/TiO2[J]. Surface Science, 2016, 652: 172-182. |
33 | Harris J W, Arvay J, Mitchell G, et al. Propylene oxide inhibits propylene epoxidation over Au/TS-1[J]. Journal of Catalysis, 2018, 365: 105-114. |
34 | Imanaka T, Okamoto Y, Teranishi S. The isomerization of propylene oxide on zeolite catalysts[J]. Bulletin of the Chemical Society of Japan, 1972, 45(11): 3251-3254. |
35 | Nijhuis T A, Visser T, Weckhuysen B M. Mechanistic study into the direct epoxidation of propene over gold/titania catalysts[J]. The Journal of Physical Chemistry B, 2005, 109(41): 19309-19319. |
36 | Nijhuis T A, Visser T, Weckhuysen B M. The role of gold in gold-titania epoxidation catalysts[J]. Angewandte Chemie International Edition, 2005, 44(7): 1115-1118. |
37 | Ruiz A, van der Linden B, Makkee M, et al. Acrylate and propoxy-groups: contributors to deactivation of Au/TiO2 in the epoxidation of propene[J]. Journal of Catalysis, 2009, 266(2): 286-290. |
38 | Yao S N, Xu L H, Wang J, et al. Activity and stability of titanosilicate supported Au catalyst for propylene epoxidation with H2 and O2[J]. Molecular Catalysis, 2018, 448: 144-152. |
39 | Chowdhury B, Bando K K, Bravo-Suárez J J, et al. Activity of silylated titanosilicate supported gold nanoparticles towards direct propylene epoxidation reaction in the presence of trimethylamine[J]. Journal of Molecular Catalysis A: Chemical, 2012, 359: 21-27. |
40 | Kanungo S, Keshri K S, van Hoof A J F, et al. Silylation enhances the performance of Au/Ti-SiO2 catalysts in direct epoxidation of propene using H2 and O2[J]. Journal of Catalysis, 2016, 344: 434-444. |
41 | Kanungo S, Keshri K S, Hensen E J M, et al. Direct epoxidation of propene on silylated Au-Ti catalysts: a study on silylation procedures and the effect on propane formation[J]. Catalysis Science & Technology, 2018, 8(12): 3052-3059. |
[1] | 张志华, 杜威, 段学志, 周兴贵. 表面改性未焙烧TS-1固载金催化丙烯氢氧环氧化反应性能研究[J]. 化工学报, 2021, 72(7): 3613-3625. |
[2] | 叶凯, 刘香华, 姜月, 于颖, 赵亚飞, 庄烨, 郑进保, 陈秉辉. 低温等离子体协同CeO2/13X催化降解甲苯[J]. 化工学报, 2021, 72(7): 3706-3715. |
[3] | 朱倩倩, 靳海波, 郭晓燕, 何广湘, 马磊, 张荣月, 谷庆阳, 杨索和. H2O2/乙腈体系下MgO催化环己酮Baeyer-Villiger绿色氧化合成ε-己内酯的研究[J]. 化工学报, 2021, 72(5): 2638-2646. |
[4] | 王琴, 徐会金, 韩兴超, 赵长颖. MgO/Mg(OH)2热化学储热反应的第一性原理研究[J]. 化工学报, 2021, 72(3): 1242-1252. |
[5] | 杜威, 张志华, 段学志, 周兴贵. 丙烯氢氧环氧化动力学与反应器概念设计研究进展[J]. 化工学报, 2021, 72(1): 116-131. |
[6] | 葛冰青, 阴义轩, 王亚溪, 张宏伟, 袁珮. 溶剂对丁腈橡胶溶解、尺寸、结构和催化加氢的影响研究[J]. 化工学报, 2021, 72(1): 543-554. |
[7] | 王栋, 刘雅如, 陈卓, 寇遵丽, 鲁月红. 充注量对小型CO2水源热泵热水器性能的影响及其最佳值的确定[J]. 化工学报, 2020, 71(S1): 397-403. |
[8] | 张红, 唐留. p型掺杂剂Cp2Mg在MOCVD气相中的反应机理研究[J]. 化工学报, 2020, 71(7): 3000-3008. |
[9] | 金燕, 杨倩, 赵文斌, 胡宝山. 石墨烯化学气相沉积法可控制备的催化反应体系研究[J]. 化工学报, 2020, 71(6): 2564-2585. |
[10] | 朱晓蓉, 李亚飞. 二维AuP2材料电催化固氮性能的理论研究[J]. 化工学报, 2020, 71(10): 4820-4825. |
[11] | 王鲁丰, 钱鑫, 邓丽芳, 袁浩然. 氮气电化学合成氨催化剂研究进展[J]. 化工学报, 2019, 70(8): 2854-2863. |
[12] | 侯莲霞, 袁兆平, 乔鸿昌, 周静红, 周兴贵. Ni-W2C催化葡萄糖氢解制备低碳二元醇反应机理研究[J]. 化工学报, 2019, 70(4): 1390-1400. |
[13] | 梁文胜, 刘江涛, 赵月, 黄伟, 左志军. NiO和Ni催化剂对苯甲酸热解机理的理论计算[J]. 化工学报, 2019, 70(4): 1429-1435. |
[14] | 梁天水, 王宗莹, 高坤, 李润婉, 王铮, 钟委, 赵军. 基于cup burner的含铁基添加剂超细水雾灭火有效性分析[J]. 化工学报, 2019, 70(3): 1236-1242. |
[15] | 张弋, 李建波, 王泉海, 卢啸风. 新型双流化床炉内NOx生成特性数值模拟[J]. 化工学报, 2018, 69(4): 1703-1713. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1320
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 780
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||