1 |
TidririK, ChattinN, VerronS, et al. Bridging data-driven and model-based approaches for process fault diagnosis and health monitoring: a review of researches and future challenges [J]. Annu. Rev. Control, 2016, 42: 63-81.
|
2 |
TongC, El-FarraN H, PalazogluA, et al. Fault detection and isolation in hybrid process systems using a combined data-driven and observer-design methodology [J]. AIChE J., 2014, 60(8): 2805-2814.
|
3 |
ZhouL, ZhengJ, GeZ, et al. Multimode process monitoring based on switching autoregressive dynamic latent variable model [J]. IEEE Trans. Ind. Electron., 2018, 65(10): 8184-8194.
|
4 |
GeZ. Review on data-driven modeling and monitoring for plant-wide industrial processes [J]. Chemom. Intell. Lab. Syst., 2017, 171: 16-25.
|
5 |
SeversonK, ChaiwatanodomP, BraatzR D. Perspectives on process monitoring of industrial systems [J]. Annu. Rev. Control, 2016, 42: 190-200.
|
6 |
DongY, QinS J. Regression on dynamic PLS structures for supervised learning of dynamic data [J]. J. Process Control, 2018, 68: 64-72.
|
7 |
蒋栋年, 李炜. 基于数据驱动残差评价策略的故障检测方法[J]. 控制与决策, 2017, 32(7): 1181-1188.
|
|
JiangD N, LiW. Fault detection method based on data-driven residual evaluation strategy [J]. Control & Decision, 2017, 32(7): 1181-1188.
|
8 |
GeZ, SongZ, DingS, et al. Data mining and analytics in process industry: the role of machine learning [J]. IEEE Access, 2017, 5: 20590-20616.
|
9 |
董顺, 李益国, 孙栓柱, 等. 基于状态空间主成分分析网络的故障检测方法[J]. 化工学报, 2018, 69(8): 3528-3536.
|
|
DongS, LiY G, SunS Z, et al. Fault detection method based on state space-PCANet [J]. CIESC Journal, 2018, 69(8): 3528-3536.
|
10 |
童楚东, 蓝艇, 史旭华. 基于互信息的分散式动态PCA故障检测方法[J]. 化工学报, 2016, 67(10): 4317-4323.
|
|
TongC D, LanT, ShiX H. Fault detection by decentralized dynamic PCA algorithm on mutual information [J]. CIESC Journal, 2016, 67(10): 4317-4323.
|
11 |
赵帅, 宋冰, 侍洪波. 基于加权互信息主元分析算法的质量相关故障检测[J]. 化工学报, 2018, 69(3): 926-973.
|
|
ZhaoS, SongB, ShiH B. Quality-related fault detection based on weighted mutual information principal component analysis [J]. CIESC Journal, 2018, 69(3): 926-973.
|
12 |
LiuY, ZhangG, XuB. Compressive sparse principal component analysis for process supervisory monitoring and fault detection [J]. J. Process Control, 2017, 50: 1-10.
|
13 |
蓝艇, 童楚东, 史旭华. 变量加权型主元分析算法及其在故障检测中的应用[J]. 化工学报, 2017, 68(8): 3177-3182.
|
|
LanT, TongC D, ShiX H. Variable weighted principal component analysis algorithm and its application in fault detection [J]. CIESC Journal, 2017, 68(8): 3177-3182.
|
14 |
TongC, LanT, ShiX. Fault detection and diagnosis of dynamic processes using weighted dynamic decentralized PCA approach [J]. Chemom. Intell. Lab. Syst., 2017, 161: 34-42.
|
15 |
XiaoZ, WangH, ZhouJ. Robust dynamic process monitoring based on sparse representation preserving embedding [J]. J. Process Control, 2016, 40: 119-133.
|
16 |
LeeJ M, YooC K, LeeI B. Statistical monitoring of dynamic processes based on dynamic independent component analysis [J]. Chem. Eng. Sci., 2004, 59: 2995-3006.
|
17 |
ZhaoH. Dynamic graph embedding for fault detection [J]. Comput. Chem. Eng., 2018, 117: 359-371.
|
18 |
Vanden KerkhofP, GinsG, VanlaerJ, et al. Dynamic model-based fault diagnosis for (bio)chemical batch processes [J]. Comput. Chem. Eng., 2012, 40: 12-21.
|
19 |
ChoiS W, MorrisJ, LeeI B. Dynamic model-based batch process monitoring [J]. Chem. Eng. Sci., 2008, 63: 622-636.
|
20 |
ZhaoC, GaoF. Online fault prognosis with relative deviation analysis and vector autoregressive modeling [J]. Chem. Eng. Sci., 2015, 138: 531-543.
|
21 |
LiG, QinS J, ZhouD. A new method of dynamic latent-variable modeling for process monitoring [J]. IEEE Trans. Ind. Electron., 2014, 61(11): 6438-6445.
|
22 |
DongY, QinS J. A novel dynamic PCA algorithm for dynamic data modeling and process monitoring [J]. J. Process Control, 2018, 67: 1-11.
|
23 |
ZhouL, LiG, SongZ, QinS J. Autoregressvie dynamic latent variable models for process monitoring [J]. IEEE Tran. Control Syst. Tech., 2017, 25(1): 366-373.
|
24 |
ShangJ, ChenM, ZhangH. Fault detection based on augmented kernel Mahalanobis distance for nonlinear dynamic processes[J]. Comput. Chem. Eng., 2018, 109: 311-321.
|
25 |
DownsJ J, VogekE F. A plant-wide industrial process control problem [J]. Comput. Chem. Eng., 1993, 17(3): 245-255.
|
26 |
仓文涛, 杨慧中. 基于主元子空间富信息重构的过程监测方法[J]. 化工学报, 2018, 69(3): 1114-1120.
|
|
CangW T, YangH Z. A process monitoring method based on informative principal component subspace reconstruction [J]. CIESC Journal, 2018, 69(3): 1114-1120.
|
27 |
周乐, 宋执环, 侯北平, 等. 一种鲁棒半监督建模方法及其在化工过程故障检测中的应用[J]. 化工学报, 2017, 68(3): 1109-1115.
|
|
ZhouL, SongZ H, HouB P, et al. Robust semi-supervised modelling method and its application to fault detection in chemical processes [J]. CIESC Journal, 2017, 68(3): 1109-1115.
|
28 |
QinS J. Statistical process monitoring: basics and beyond [J]. J. Chemom., 2003, 17(7/8): 480-502.
|
29 |
杨健, 宋冰, 谭帅, 等. 时序约束NPE算法在化工过程故障检测中的应用[J]. 化工学报, 2016, 67(12): 5131-5139.
|
|
YangJ, SongB, TanS, et al. Time constrained NPE for fault detection in chemical processes [J]. CIESC Journal, 2016, 67(12): 5131-5139.
|
30 |
BakdiA, KouadriA. A new adaptive PCA based thresholding scheme for fault detection in complex systems [J]. Chemom. Intell. Lab. Syst., 2017, 162: 83-93.
|
31 |
孙栓柱, 董顺, 江叶峰, 等. 基于最小充分统计量模式分析的故障检测方法[J]. 化工学报, 2018, 69(3): 1228-1237.
|
|
SunS Z, DongS F, JiangY F, et al. Fault detection method based on minimum sufficient statistics pattern analysis [J]. CIESC Journal, 2018, 69(3): 1228-1237.
|
32 |
LiuK, FeiZ, YueB, et al. Adaptive sparse principal component analysis for enhanced process monitoring and fault isolation [J]. Chemom. Intell. Lab. Syst., 2015, 146: 426-436.
|