化工学报 ›› 2022, Vol. 73 ›› Issue (4): 1658-1672.doi: 10.11949/0438-1157.20211567

• 过程系统工程 • 上一篇    下一篇

集成轻烃回收单元代理模型的氢气网络多目标优化

张淑君(),王诗慧,张欣,吉旭,戴一阳,党亚固,周利()   

  1. 四川大学化学工程学院,四川 成都 610065
  • 收稿日期:2021-11-03 修回日期:2022-01-19 出版日期:2022-04-05 发布日期:2022-04-25
  • 通讯作者: 周利 E-mail:shujunz094@163.com;chezli@scu.edu.cn
  • 作者简介:张淑君(1997—),女,硕士研究生,shujunz094@163.com
  • 基金资助:
    国家重点研发计划项目(2021YFB40005);国家自然科学基金项目(22108178)

Surrogate-assisted multi-objective optimization of hydrogen networks with light hydrocarbon recovery unit

Shujun ZHANG(),Shihui WANG,Xin ZHANG,Xu JI,Yiyang DAI,Yagu DANG,Li ZHOU()   

  1. School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
  • Received:2021-11-03 Revised:2022-01-19 Published:2022-04-05 Online:2022-04-25
  • Contact: Li ZHOU E-mail:shujunz094@163.com;chezli@scu.edu.cn

摘要:

当前炼油企业氢气需求持续增长,导致炼厂成本及生产过程温室气体排放增加,炼油企业通过增设轻烃回收单元对氢气和轻烃组分进行回收利用,能有效缓解这一现状。因此,在氢气网络优化中有必要考虑轻烃回收单元。本研究提出了一种集成轻烃回收单元的氢气网络多目标数学规划模型,对轻烃回收单元采用代理模型建模方法,解决了直接嵌入严格机理模型可能导致的高计算成本问题,以总年度费用最小为优化目标,同时将系统的环境影响也纳入优化目标。实例计算表明,所提出的方法能够有效降低氢气网络的年度费用及温室气体排放,并揭示了集成轻烃回收单元的氢气网络经济性能与环境影响之间的权衡关系,为工业应用提供了一定的理论基础。

关键词: 过程系统, 氢气网络, 集成, 数学规划, 多目标, 优化设计

Abstract:

Global warming has become increasingly serious over the last decade. As one of the greenhouse gas (GHG) emission contributors, petroleum refineries are now encountering high GHG emissions and annual costs due to the increase of hydrogen demand. Light hydrocarbons recovery(LHR) unit can effectively reduce GHG emissions and improve resource utilization through recovering hydrogen and hydrocarbons components. Therefore, it is necessary to consider the light hydrocarbon recovery unit in the optimization of the hydrogen network. To avoid the high computational cost of rigorous process, this paper proposed surrogate models as approximations to the rigorous LHR process. Meanwhile, the environmental impact was added to the optimization goal. Finally, a hydrogen network multi-objective mathematical programming model was established. The proposed approach was applied to a case study taken from a real refinery. The results showed that the proposed method can effectively reduce the annual cost and GHG emissions of the hydrogen network, and reveal the trade-off relationship between the economic performance and the environmental impact of the hydrogen network integrated LHR unit. Hence it can provide a certain theoretical basis for further industrial application.

Key words: process system, hydrogen network, integration, mathematical programming, multi-objective, optimal design

中图分类号: 

  • TQ 021.8

图1

氢气网络的状态空间超结构"

图2

轻烃回收单元流程图"

图3

轻烃回收单元代理模型的构建步骤"

图4

代理模型的输入与输出变量"

图5

当前氢气网络的结构示意图"

表1

氢气网络中的相关流股的详细信息"

氢源供氢
单元流量/(mol/s)组成/%(mol)

压力/

MPa

H2C1C2C3C4C5H2S
DHT-144.5395.571.491.260.870.750.0502
DHT-2274.4397.380.880.740.520.450.0302
GHT163.2797.650.800.670.470.400.0202
KHT-137.6295.301.581.340.930.800.0502
KHT-260.3299.010.340.280.190.050.0102
氢阱进口
单元流量/(mol/s)组成/%(mol)

压力/

MPa

H2C1C2C3C4C5H2S
DHT-1990.5387.606.593.411.610.500.240.056.72
DHT-21004.590.005.212.751.340.470.190.047.00
GHT811.889.325.622.941.410.460.210.042.70
KHT-160.7092.233.582.171.200.680.120.023.83
KHT-283.4395.752.141.180.600.250.070.015.45
高分气
单元流量/(mol/s)组成/%(mol)

压力

/MPa

H2C1C2C3C4C5H2S
DHT-1797.5086.008.283.921.25000.555.00
DHT-2753.0091.005.142.300.660.350.140.416.40
GHT725.0083.007.204.403.101.100.600.602.00
KHT-145.5091.701.842.861.990.700.550.363.00
KHT-261.3087.806.692.311.260.940.600.404.80
低分气
单元流量/(mol/s)组成/%(mol)

压力/

MPa

H2C1C2C3C4C5H2S
DHT-136.0052.308.0813.5210.808.225.981.101.1
DHT-243.4050.3116.7111.518.717.283.781.701.2
GHT19.8042.3220.5115.029.218.562.581.801.0
KHT-15.2035.2132.368.649.737.904.661.501.0
KHT-25.6067.6010.658.365.984.670.941.801.0

表2

案例中各单元之间的管道距离"

单元间距/m
DHT-1DHT-2GHTKHT-1KHT-2
CCR500680100011501280
H2 Plant250430125014001150
DHT-101808901000850
DHT-21800700820700
GHT8907000250400
KHT-110008202500150
KHT-28507004001500
PSA480300510760910

表3

氢阱入口流股的浓度约束"

单元YH2Min/%(mol)YH2SMax/%(mol)
DHT-187.600.15
DHT-290.000.15
GHT86.830.15
KHT-192.230.15
KHT-289.500.15

表4

轻烃回收单元吸收塔输入变量范围"

输入变量下限上限
FH2in/(kmol/h)157.48236.22
FH2Sin/(kmol/h)0.620.94
FC1in/(kmol/h)47.4971.24
FC2in/(kmol/h)39.6859.52
FC3in/(kmol/h)29.6844.53
FC4in/(kmol/h)24.3736.56
FC5in/(kmol/h)13.1219.68
Foilin/(kmol/h)100.00250.00

表5

轻烃回收单元模型的验证结果"

装置输出变量RMSER2
吸收塔FH2out/(kmol/h)5.40×10-30.99
FH2Sout/(kmol/h)8.60×10-3
FC1out/(kmol/h)1.28×10-2
FC2out/(kmol/h)1.39×10-1
FC3out/(kmol/h)2.01×10-1
脱乙烷塔FH2yout/(kmol/h)3.07×10-90.99
FH2Syout/(kmol/h)2.66×10-4
FC1yout/(kmol/h)1.29×10-6
FC2yout/(kmol/h)3.01×10-8
FC3yout/(kmol/h)2.94×10-9
Qcooly/kW1.21×10-1
????????Qredy/kW4.50×10-1
脱丁烷塔FH2Sdout/(kmol/h)4.27×10-80.99
FC2dout/(kmol/h)1.82×10-8
FC3dout/(kmol/h)1.44×10-5
FC4dout/(kmol/h)3.32×10-8
FC5dout/(kmol/h)4.29×10-9
???????Qcoold/kW1.18×10-0
???????Qredd/kW3.31×10-0

图6

轻烃回收单元代理模型的残差图"

图7

多目标优化后得到的Pareto曲线"

图8

最小总年度费用的氢气网络结构图"

图9

最小总年度CO2排放的氢气网络结构图"

图10

原氢气网络与两种优化后氢气网络的TAC和TCE对比"

图11

不同Pareto最优解的CO2排放组成"

1 周逸江. 国际组织自主性与全球气候治理中的联合国: 聚焦2019年联合国气候行动峰会[J]. 国际论坛, 2020, 22(5): 76-96, 158.
Zhou Y J. The autonomy of international organizations and the united nations in global climate governance: the case of the 2019 UN global climate action summit[J]. International Forum, 2020, 22(5): 76-96, 158.
2 陈卫东. 碳中和是一场没有硝烟的全球博弈[J]. 中国石油和化工产业观察, 2021(8): 60-61.
Chen W D. Carbon neutrality is a global game without gunpowder smoke [J]. China Petrochemical Industry Observer, 2021(8): 60-61.
3 周利. 炼油企业资源网络的集成优化方法研究[D]. 杭州: 浙江大学, 2015.
Zhou L. Integrated optimization of resource networks in refinery[D]. Hangzhou: Zhejiang University, 2015.
4 魏莉莉. 炼油厂氢气系统稳定性的研究[D]. 杭州: 浙江大学, 2018.
Wei L L. Stability optimization of hydrogen networks in refinery[D]. Hangzhou: Zhejiang University, 2018.
5 Zhou L, Liao Z W, Wang J D, et al. Optimal design of sustainable hydrogen networks[J]. International Journal of Hydrogen Energy, 2013, 38(7): 2937-2950.
6 Alves J J, Towler G P. Analysis of refinery hydrogen distribution systems[J]. Industrial & Engineering Chemistry Research, 2002, 41(23): 5759-5769.
7 Foo D C Y, Manan Z A. Setting the minimum utility gas flowrate targets using cascade analysis technique[J]. Industrial & Engineering Chemistry Research, 2006, 45(17): 5986-5995.
8 Zhao Z H, Liu G L, Feng X. New graphical method for the integration of hydrogen distribution systems[J]. Industrial & Engineering Chemistry Research, 2006, 45(19): 6512-6517.
9 Hallale N, Liu F. Refinery hydrogen management for clean fuels production[J]. Advances in Environmental Research, 2001, 6(1): 81-98.
10 Liao Z W, Wang J D, Yang Y R, et al. Integrating purifiers in refinery hydrogen networks: a retrofit case study[J]. Journal of Cleaner Production, 2010, 18(3): 233-241.
11 Liao Z W, Tu G N, Lou J Y, et al. The influence of purifier models on hydrogen network optimization: insights from a case study[J]. International Journal of Hydrogen Energy, 2016, 41(10): 5243-5249.
12 梁肖强, 刘永忠, 张亮. 集中式提纯器的设置与具有中间等级氢气网络的优化[J]. 化工进展, 2014, 33(3): 577-582.
Liang X Q, Liu Y Z, Zhang L. Installation of a centralized purifier and optimization of hydrogen network with intermediate levels[J]. Chemical Industry and Engineering Progress, 2014, 33(3): 577-582.
13 Zhou L, Liao Z W, Wang J D, et al. Hydrogen sulfide removal process embedded optimization of hydrogen network[J]. International Journal of Hydrogen Energy, 2012, 37(23): 18163-18174.
14 Xia Z P, Wang S H, Zhou L, et al. Surrogate-assisted optimization of refinery hydrogen networks with hydrogen sulfide removal[J]. Journal of Cleaner Production, 2021, 310: 127477.
15 Jia X X, Liu G L. Optimization of hydrogen networks with multiple impurities and impurity removal[J]. Chinese Journal of Chemical Engineering, 2016, 24(9): 1236-1242.
16 焦云强, 苏宏业, 侯卫锋. 炼油厂氢气网络柔性优化[J]. 化工学报, 2012, 63(9): 2739-2748.
Jiao Y Q, Su H Y, Hou W F. Flexible optimization of refinery hydrogen network[J]. CIESC Journal, 2012, 63(9): 2739-2748.
17 Lou J Y, Liao Z W, Jiang B B, et al. Robust optimization of hydrogen network[J]. International Journal of Hydrogen Energy, 2014, 39(3): 1210-1219.
18 Deng C, Lu X T, Zhang Q X, et al. Fuzzy optimization design of multicomponent refinery hydrogen network[J]. Chinese Journal of Chemical Engineering, 2021,DOI:10.1016/j.cjche.2021.04.014 .
doi: 10.1016/j.cjche.2021.04.014
19 蒋迎花, 韩儒松, 康丽霞, 等. 厂际氢气网络多周期集成的分步优化方法[J]. 化工学报, 2021, 72(9): 4816-4829.
Jiang Y H, Han R S, Kang L X, et al. Step-wise approach to integrate inter-plant hydrogen networks under multi-period operations[J]. CIESC Journal, 2021, 72(9): 4816-4829.
20 朱美倩. 炼厂气组合分离工艺设计与氢气系统优化[D]. 北京: 中国石油大学(北京), 2019.
Zhu M Q. Design of hybrid separation process for refinery-off gas and optimization of hydrogen system[D]. Beijing: China University of Petroleum (Beijing), 2019.
21 李雪静, 乔明, 郑轶丹. 世界炼油工业二氧化碳减排进展[J]. 中外能源, 2010, 15(5): 64-70.
Li X J, Qiao M, Zheng Y D. Advances in CO2 emission reduction in global refining industry[J]. Sino-Global Energy, 2010, 15(5): 64-70.
22 Deng C, Zhu M Q, Liu J, et al. Systematic retrofit method for refinery hydrogen network with light hydrocarbons recovery[J]. International Journal of Hydrogen Energy, 2020, 45(38): 19391-19404.
23 Yang M B, Feng X, Zhao L. Coupling pinch analysis and rigorous process simulation for hydrogen networks with light hydrocarbon recovery[J]. Chinese Journal of Chemical Engineering, 2021, 40: 141-148.
24 Bhosekar A, Ierapetritou M. Advances in surrogate based modeling, feasibility analysis, and optimization: a review[J]. Computers & Chemical Engineering, 2018, 108: 250-267.
25 Wang S H, Zhou L, Ji X, et al. A surrogate-assisted approach for the optimal synthesis of refinery hydrogen networks[J]. Industrial & Engineering Chemistry Research, 2019, 58(36): 16798-16812.
26 Li H R, Liao Z W, Sun J Y, et al. Simultaneous design of hydrogen allocation networks and PSA inside refineries[J]. Industrial & Engineering Chemistry Research, 2020, 59(10): 4712-4720.
27 王红光, 王立国. 炼厂干气回收轻烃技术评述[J]. 炼油技术与工程, 2009, 39(12): 8-11.
Wang H G, Wang L G. Recovery of light olefins from refinery dry-gas[J]. Petroleum Refinery Engineering, 2009, 39(12): 8-11.
28 Jin R, Chen W, Simpson T W. Comparative studies of metamodelling techniques under multiple modelling criteria[J]. Structural and Multidisciplinary Optimization, 2001, 23(1): 1-13.
29 Garud S S, Karimi I A, Kraft M. Design of computer experiments: a review[J]. Computers & Chemical Engineering, 2017, 106: 71-95.
30 Elkamel A, Alhajri I, Almansoori A, et al. Integration of hydrogen management in refinery planning with rigorous process models and product quality specifications[J]. International Journal of Process Systems Engineering, 2011, 1(3/4): 302.
31 牛亚群, 董康银, 姜洪殿, 等. 炼油企业碳排放估算模型及应用[J]. 环境工程, 2017, 35(3): 163-167.
Niu Y Q, Dong K Y, Jiang H D, et al. Integrated carbon dioxide emissions evaluation method of Chinese petroleum refining enterprises[J]. Environmental Engineering, 2017, 35(3): 163-167.
32 Geoffrion A M. Proper efficiency and the theory of vector maximization[J]. Journal of Mathematical Analysis and Applications, 1968, 22(3): 618-630.
33 Davisson W I. Public investment criteria[J]. Land Economics, 1964, 40(2): 153.
34 Rosenberg R S. Simulation of genetic populations with biochemical properties(II):Selection of crossover probabilities[J]. Mathematical Biosciences, 1970, 8(1/2): 1-37.
35 Kim I Y, de Weck O L. Adaptive weighted-sum method for bi-objective optimization: Pareto front generation[J]. Structural and Multidisciplinary Optimization, 2005, 29(2): 149-158.
36 Brook A, Kendrick D, GAMS Meeraus A., user's guide a [J]. ACM SIGNUM Newsletter, 1988, 23(3/4): 10-11.
[1] 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045.
[2] 刘尚豪, 贾胜坤, 罗祎青, 袁希钢. 基于梯度提升决策树的三组元精馏流程结构最优化[J]. 化工学报, 2023, 74(5): 2075-2087.
[3] 周必茂, 许世森, 王肖肖, 刘刚, 李小宇, 任永强, 谭厚章. 烧嘴偏转角度对气化炉渣层分布特性的影响[J]. 化工学报, 2023, 74(5): 1939-1949.
[4] 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973.
[5] 贠程, 王倩琳, 陈锋, 张鑫, 窦站, 颜廷俊. 基于社团结构的化工过程风险演化路径深度挖掘[J]. 化工学报, 2023, 74(4): 1639-1650.
[6] 李纪元, 李金旺, 周刘伟. 不同扰流结构冷板传热性能研究[J]. 化工学报, 2023, 74(4): 1474-1488.
[7] 许文烜, 江锦波, 彭新, 门日秀, 刘畅, 彭旭东. 宽速域三种典型型槽油气密封泄漏与成膜特性对比研究[J]. 化工学报, 2023, 74(4): 1660-1679.
[8] 张生安, 刘桂莲. 高效太阳能电解水制氢系统及其性能的多目标优化[J]. 化工学报, 2023, 74(3): 1260-1274.
[9] 陈俊先, 姬忠礼, 赵瑜, 张倩, 周岩, 刘猛, 刘震. 基于微波技术的天然气管道内颗粒物在线检测方法研究[J]. 化工学报, 2023, 74(3): 1042-1053.
[10] 王子宗, 索寒生, 赵学良. 数字孪生智能乙烯工厂研究与构建[J]. 化工学报, 2023, 74(3): 1175-1186.
[11] 袁海鸥, 叶方俊, 张硕, 罗祎青, 袁希钢. 考虑中间换热器的能量集成精馏序列合成[J]. 化工学报, 2023, 74(2): 796-806.
[12] 魏进家, 刘蕾, 杨小平. 面向高热流电子器件散热的环路热管研究进展[J]. 化工学报, 2023, 74(1): 60-73.
[13] 高学金, 程琨, 韩华云, 高慧慧, 齐咏生. 基于中心损失的条件生成式对抗网络的冷水机组故障诊断[J]. 化工学报, 2022, 73(9): 3950-3962.
[14] 王雅琳, 潘雨晴, 刘晨亮. 基于GSA-LSTM动态结构特征提取的间歇过程监测方法[J]. 化工学报, 2022, 73(9): 3994-4002.
[15] 陈昊, 陈鹏忠, 彭孝军. 金属基极紫外光刻胶[J]. 化工学报, 2022, 73(8): 3307-3325.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!