1 |
IborraS, HuberG W, CormaA. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering[J]. Chemical Reviews, 2006, 106(9): 4044-4089.
|
2 |
VeltyA, IborraS, CormaA. Chemical routes for the transformation of biomass into chemicals[J]. Chemical Reviews, 2007, 107(6): 2411-2502.
|
3 |
TilmanD, SocolowR, FoleyJ A, et al. Beneficial biofuels—the food, energy, and environment trilemma[J]. Science, 2009, 325(5938): 270-271.
|
4 |
ZhouB W, SongJ L, ZhangZ R, et al. Highly selective photocatalytic oxidation of biomass-derived chemicals to carboxyl compounds over Au/TiO2[J]. Green Chemistry, 2017, 19: 1075-1081.
|
5 |
CuiJ, TanJ, ZhuY, et al. Aqueous hydrogenation of levulinic acid to 1,4-pentanediol over Mo-modified Ru/activated carbon catalyst[J]. ChemSusChem, 2018, 11(8): 1316-1320.
|
6 |
AdkinsH, ConnorR. The catalytic hydrogenation of organic compounds over copper chromite[J]. Journal of the American Chemical Society, 1931, 53(3): 1091-1095.
|
7 |
ConnorR, AdkinsH. Hydrogenolysis of oxygenated organic compounds[J]. Journal of the American Chemical Society, 1932, 54(12): 4678-4690.
|
8 |
ConnorR, FolkersK, AdldnsH. The preparation of copper-chromium oxide catalysts for hydrogenation[J]. Journal of the American Chemical Society, 1932, 54(3): 1138-1145.
|
9 |
LiX, JiaP, WangT. Furfural: a promising platform compound for sustainable production of C4 and C5 chemicals[J]. ACS Catalysis, 2016, 6: 7621-7640.
|
10 |
SunD, SatoS, UedaW, et al. Production of C4 and C5 alcohols from biomass-derived materials[J]. ChemInform, 2016, 47(26): 2579-2597.
|
11 |
MizugakiT, YamakawaT, NagatsuY, et al. Direct transformation of furfural to 1,2-pentanediol using a hydrotalcite-supported platinum nanoparticle catalyst[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(10): 2243-2247.
|
12 |
LiuH, HuangZ, KangH, et al. Selective hydrogenolysis of biomass-derived furfuryl alcohol into 1, 2- and 1, 5-pentanediol over highly dispersed Cu-Al2O3 catalysts[J]. Chinese Journal of Catalysis, 2016, 37(5): 700-710.
|
13 |
SchlafM. Selective deoxygenation of sugar polyols to α, ω-diols and other oxygen content reduced materials—a new challenge to homogeneous ionic hydrogenation and hydrogenolysis catalysis[J]. Dalton Transactions, 2006, 29(39): 4645-4653.
|
14 |
SatoM, OtabeN, TujiT, et al. Highly-selective and high-speed Claisen rearrangement induced with subcritical water microreaction in the absence of catalyst[J]. Green Chemistry, 2009, 11(6): 763-766.
|
15 |
ChatterjeeM, KawanamiH, IshizakaT, et al. An attempt to achieve the direct hydrogenolysis of tetrahydrofurfuryl alcohol in supercritical carbon dioxide [J]. Catalysis Science & Technology, 2011, 1(8): 1466-1471.
|
16 |
XuW J, WangH F, WangY P, et al. Direct catalytic conversion of furfural to 1, 5-pentanediol by hydrogenolysis of the furan ring under mild conditions over Pt/Co2AlO4 catalyst[J]. Chemical Communication, 2011, 47(3): 3924-3926.
|
17 |
ZhangB, ZhuY, DingG, et al. Selective conversion of furfuryl alcohol to 1, 2-pentanediol over a Ru/MnOx catalyst in aqueous phase[J]. Green Chemistry, 2012, 14(12): 3402-3409.
|
18 |
CuiJ, TanJ, CuiX, et al. Conversion of xylose to furfuryl alcohol and 2-methylfuran in a continuous fixed-bed reactor[J]. ChemSusChem, 2016, 9(11): 1259-1262.
|
19 |
XiaS X , NieR F , LuX Y , et al. Hydrogenolysis of glycerol over Cu0.4/Zn5.6-xMgxAl2O8.6 catalysts: the role of basicity and hydrogen spillover[J]. Journal of Catalysis, 2012, 296(7): 1-11.
|
20 |
PinnavaiaT J. Intercalated clay catalysts[J]. Science, 1983, 220(4595): 365-371.
|
21 |
WęgrzynA, Rafalska-ŁasochaA, MajdaD, et al. The influence of mixed anionic composition of Mg-Al hydrotalcites on the thermal decomposition mechanism based on in situ study[J]. Journal of Thermal Analysis & Calorimetry, 2010, 99(2): 443-457.
|
22 |
ForgionnyA, FierroG, MondragonF, et al. Effect of Mg/Al ratio on catalytic behavior of Fischer-Tropsch cobalt-based catalysts obtained from hydrotalcites precursors[J]. Topic Catalysis, 2016, 59(2/4): 230-240.
|
23 |
ZhouM, ZengZ, ZhuH, et al. Aqueous-phase catalytic hydrogenation of furfural to cyclopentanol over Cu-Mg-Al hydrotalcites derived catalysts: model reaction for upgrading of bio-oil[J]. Journal of Energy Chemistry, 2014, 23(1): 91-96.
|
24 |
DebeckerD P, GaigneauxE M, G. ExploringBysca, tuning, and exploiting the basicity of hydrotalcites for applications in heterogeneous catalysis[J]. Chemistry, 2009, 15(16): 3920-3935.
|
25 |
JiangZ, HaoZ P, YuJ J, et al. Catalytic combustion of methane on novel catalysts derived from Cu-Mg/Al-hydrotalcites[J]. Catalysis Letters, 2005, 9(3/4): 157-163.
|
26 |
ZengY, ZhangT, XuY, et al. Cu/Mg/Al hydrotalcite-like hydroxide catalysts for o-phenylphenol synthesis[J]. Applied Clay Science, 2016, 126: 207-214.
|
27 |
ParkerL M, MilestoneN B, NewmanR H. The use of hydrotalcite as an anion absorbent[J]. Industrial & Engineering Chemistry Research, 1995, 34(4): 1196-1202.
|
28 |
Melián-CabreraI, López GranadosM, FierroJ L G. Thermal decomposition of a hydrotalcite-containing Cu-Zn-Al precursor: thermal methods combined with an in situ DRIFT study[J]. Physical Chemistry Chemical Physics, 2002, 4(13): 3122-3127.
|
29 |
KannanS, RivesV, KnozingerH. High-temperature transformations of Cu-rich hydrotalcites[J]. Journal of Solid State Chemistry, 2004, 177(1): 319-331.
|
30 |
BonuraG, CordaroM, CannillaC, et al. The changing nature of the active site of Cu-Zn-Zr catalysts for the CO2 hydrogenation reaction to methanol[J]. Applied Catalysis B: Environmental, 2014, 152/153: 152-161.
|
31 |
Pérez-Ramı́RezJ, MulG, MoulijnJ A. In situ Fourier transform infrared and laser Raman spectroscopic study of the thermal decomposition of Co-Al and Ni-Al hydrotalcites[J]. Vibrational Spectroscopy, 2001, 27(1): 75-88.
|
32 |
RousselotI, Tavioto-GuehC, BesseJ P, Synthesis and characterization of mixed Ga/Al-containing layered double hydroxides: study of their basic properties through the Knoevenagel condensation of benzaldehyde and ethyl cyanoacetate, and comparison to other LDHs[J]. International Journal of Inorganic Materials, 1999, 1: 165-174.
|
33 |
BasąGS, PiwowarskaZ, KowalczykA, et al. Cu-Mg-Al hydrotalcite-like materials as precursors of effective catalysts for selective oxidation of ammonia to dinitrogen—the influence of Mg/Al ratio and calcination temperature[J]. Applied Clay Science, 2016, 129: 122-130.
|
34 |
CormaA, FornesV, Martin-ArandaR M, et al. ChemInform abstract: determination of base properties of hydrotalcites: condensation of benzaldehyde with ethyl acetoacetate[J]. Journal of Catalysis, 1992, 134(1): 58-65.
|