化工学报 ›› 2019, Vol. 70 ›› Issue (8): 2823-2834.DOI: 10.11949/0438-1157.20190287
收稿日期:
2019-03-27
修回日期:
2019-04-20
出版日期:
2019-08-05
发布日期:
2019-08-05
通讯作者:
姚强
作者简介:
徐静颖(1991—),女,博士研究生,基金资助:
Jingying XU(),Jiankun ZHUO,Qiang YAO()
Received:
2019-03-27
Revised:
2019-04-20
Online:
2019-08-05
Published:
2019-08-05
Contact:
Qiang YAO
摘要:
煤燃烧过程在生成SO2、NOx和颗粒物等常规污染物的同时,还会产生有机污染物。我国燃煤电厂数量多,燃煤产生的非甲烷挥发性有机物(NMVOC)已经占到了人为源排放总量的1/3。然而,已有的针对有机污染物的研究主要关注的是工业源和室内环境中的挥发性有机物,对燃煤过程产生的有机污染物研究较少。由于煤的组分复杂,燃烧温度高、燃烧工况多变,且产生高尘高湿的烟气,这些特殊环境决定了煤燃烧过程有机污染物的生成排放特性及其采样方法与工业源有所不同。本文对原煤有机污染物的前体赋存形态、燃煤过程有机污染物的生成排放特性以及有机污染物的采样与分析方法进行了较全面的综述,并探讨了燃煤有机污染物相关研究的发展方向。
中图分类号:
徐静颖, 卓建坤, 姚强. 燃煤有机污染物生成排放特性与采样方法研究进展[J]. 化工学报, 2019, 70(8): 2823-2834.
Jingying XU, Jiankun ZHUO, Qiang YAO. Research progress on formation, emission characteristics and sampling methods of organic compounds from coal combustion[J]. CIESC Journal, 2019, 70(8): 2823-2834.
种类 | 物理特性 | 典型组分 |
---|---|---|
易挥发性有机物 | 一般熔点低于室温,沸点0~50℃ | 二氯甲烷、氯乙烯、戊烷 |
挥发性有机物 | 常温下呈气态,一般沸点在50~250℃ | 甲苯、芳烃、烯烃、醛酮类 |
半挥发性有机物 | 一般熔点低于室温,沸点170~380℃ | 多环芳烃、多氯联苯类 |
颗粒有机物 | 沸点一般在380℃以上 | 脂肪酸类、正构烷烃、多环芳烃等 |
表1 有机污染物分类与特性
Table 1 Classification and characteristics of organic compounds
种类 | 物理特性 | 典型组分 |
---|---|---|
易挥发性有机物 | 一般熔点低于室温,沸点0~50℃ | 二氯甲烷、氯乙烯、戊烷 |
挥发性有机物 | 常温下呈气态,一般沸点在50~250℃ | 甲苯、芳烃、烯烃、醛酮类 |
半挥发性有机物 | 一般熔点低于室温,沸点170~380℃ | 多环芳烃、多氯联苯类 |
颗粒有机物 | 沸点一般在380℃以上 | 脂肪酸类、正构烷烃、多环芳烃等 |
浸取时间/h | 脂环烃 | 苯系物 | 直链烃 | PAHs | ||||
---|---|---|---|---|---|---|---|---|
种类 | 含量/% | 种类 | 含量/% | 种类 | 含量/% | 种类 | 含量/% | |
17 | 5 | 14.68 | 8 | 28.54 | 10 | 11.53 | 23 | 45.24 |
41 | 4 | 9.91 | 8 | 27.73 | 7 | 9.83 | 29 | 52.53 |
65 | 5 | 18.49 | 9 | 38.23 | 12 | 10.22 | 25 | 33.05 |
88 | 3 | 4.95 | 8 | 46.01 | 10 | 10.75 | 28 | 38.20 |
表2 原煤浸取的有机物浸出情况
Table 2 Organic compounds in CH2Cl2
浸取时间/h | 脂环烃 | 苯系物 | 直链烃 | PAHs | ||||
---|---|---|---|---|---|---|---|---|
种类 | 含量/% | 种类 | 含量/% | 种类 | 含量/% | 种类 | 含量/% | |
17 | 5 | 14.68 | 8 | 28.54 | 10 | 11.53 | 23 | 45.24 |
41 | 4 | 9.91 | 8 | 27.73 | 7 | 9.83 | 29 | 52.53 |
65 | 5 | 18.49 | 9 | 38.23 | 12 | 10.22 | 25 | 33.05 |
88 | 3 | 4.95 | 8 | 46.01 | 10 | 10.75 | 28 | 38.20 |
物种 | 淮南烟煤 | 龙口烟煤 | 神华烟煤 | 兖州烟煤 | 淮北烟煤 | 大同烟煤 | 资兴烟煤 | 太原烟煤 | 枣庄烟煤 | 羊城 无烟煤 | 永兴 无烟煤 |
---|---|---|---|---|---|---|---|---|---|---|---|
苯 | 1.46 | 8.29 | 6.63 | 1.79 | 8.60 | 5.03 | 14.21 | 5.08 | 2.08 | 12.22 | 6.22 |
2,6-二甲基-十氢化菲 | 1.02 | 2.64 | 21.11 | 23.70 | 12.55 | 18.57 | 0.02 | 13.42 | 4.06 | 2.60 | 3.37 |
异构十六烷 | 2.47 | 4.74 | 1.31 | 5.70 | 3.20 | 2.23 | 4.88 | 5.88 | 4.72 | 4.97 | 3.96 |
正十六烷 | 13.04 | 10.92 | 4.56 | 11.79 | 10.55 | 7.32 | 16.44 | 21.59 | 21.80 | 13.44 | 14.14 |
异构十七烷 | 1.14 | 0.97 | 0.53 | 1.14 | 1.32 | 0.79 | 1.34 | 1.94 | 1.95 | 1.62 | 1.75 |
正十七烷 | 9.42 | 9.87 | 4.35 | 8.28 | 10.17 | 6.92 | 11.82 | 14.61 | 14.79 | 12.63 | 12.34 |
正十八烷 | 5.08 | 4.41 | 1.61 | 3.70 | 4.80 | 2.27 | 4.03 | 6.50 | 6.02 | 5.63 | 5.87 |
表3 7种有机物在典型动力煤中总VOCs的百分比
Table 3 Percentage of 7 organic compounds in total VOCs in each coal/%
物种 | 淮南烟煤 | 龙口烟煤 | 神华烟煤 | 兖州烟煤 | 淮北烟煤 | 大同烟煤 | 资兴烟煤 | 太原烟煤 | 枣庄烟煤 | 羊城 无烟煤 | 永兴 无烟煤 |
---|---|---|---|---|---|---|---|---|---|---|---|
苯 | 1.46 | 8.29 | 6.63 | 1.79 | 8.60 | 5.03 | 14.21 | 5.08 | 2.08 | 12.22 | 6.22 |
2,6-二甲基-十氢化菲 | 1.02 | 2.64 | 21.11 | 23.70 | 12.55 | 18.57 | 0.02 | 13.42 | 4.06 | 2.60 | 3.37 |
异构十六烷 | 2.47 | 4.74 | 1.31 | 5.70 | 3.20 | 2.23 | 4.88 | 5.88 | 4.72 | 4.97 | 3.96 |
正十六烷 | 13.04 | 10.92 | 4.56 | 11.79 | 10.55 | 7.32 | 16.44 | 21.59 | 21.80 | 13.44 | 14.14 |
异构十七烷 | 1.14 | 0.97 | 0.53 | 1.14 | 1.32 | 0.79 | 1.34 | 1.94 | 1.95 | 1.62 | 1.75 |
正十七烷 | 9.42 | 9.87 | 4.35 | 8.28 | 10.17 | 6.92 | 11.82 | 14.61 | 14.79 | 12.63 | 12.34 |
正十八烷 | 5.08 | 4.41 | 1.61 | 3.70 | 4.80 | 2.27 | 4.03 | 6.50 | 6.02 | 5.63 | 5.87 |
采样方法 | 选择性 | 成本 | 应用范围 |
---|---|---|---|
吸附管 | 有 | 高 | C3~C20 |
采样罐 | 无 | 高 | C1~C10,吸附作用较小 |
气袋 | 无 | 低 | 沸点低的有机物,吸附作用较大 |
表4 常见的VOCs采样方法
Table 4 Conventional VOCs sampling methods
采样方法 | 选择性 | 成本 | 应用范围 |
---|---|---|---|
吸附管 | 有 | 高 | C3~C20 |
采样罐 | 无 | 高 | C1~C10,吸附作用较小 |
气袋 | 无 | 低 | 沸点低的有机物,吸附作用较大 |
1 | 中华人民共和国国家统计局. 中国统计年鉴-2018[M]. 北京: 中国统计出版社, 2018. |
National Bureau of Statistics of the People s Republic of China. China Statistical Yearbook-2018[M]. Beijing: China Statistics Press, 2018. | |
2 | 郑楚光, 徐明厚, 张军营. 煤燃烧痕量元素的排放与控制[M]. 武汉: 湖北科学技术出版社, 2002. |
ZhengC G, XuM H, ZhangJ Y. Emission and Control of Trace Elements in Coal Combustion[M]. Wuhan: Hubei Science and Technology Press, 2002. | |
3 | ZhaoY, WangS, DuanL, et al. Primary air pollutant emissions of coal-fired power plants in China: current status and future prediction[J]. Atmospheric Environment, 2008, 42(36): 8442-8452. |
4 | MeijR, Te WinkelH. The emissions of heavy metals and persistent organic pollutants from modern coal-fired power stations[J]. Atmospheric Environment, 2007, 41(40): 9262-9272. |
5 | YiH, HaoJ, DuanL, et al. Fine particle and trace element emissions from an anthracite coal-fired power plant equipped with a bag-house in China[J]. Fuel, 2008, 87(10): 2050-2057. |
6 | XuX, ChenC, QiH, et al. Development of coal combustion pollution control for SO2 and NOx in China[J]. Fuel Processing Technology, 2000, 62(2): 153-160. |
7 | ZhouZ J, LiuX W, ZhaoB, et al. Effects of existing energy saving and air pollution control devices on mercury removal in coal-fired power plants[J]. Fuel Processing Technology, 2015, 131: 99-108. |
8 | KampaM, CastanasE. Human health effects of air pollution[J]. Environmental Pollution, 2008, 151(2): 362-367. |
9 | MahlerB J, MetreP C V, CraneJ L, et al. Coal-tar-based pavement sealcoat and PAHs: implications for the environment, human health, and stormwater management[J]. Environmental Science & Technology, 2012, 46(6): 3039-3045. |
10 | LiuY, ShaoM, FuL, et al. Source profiles of volatile organic compounds (VOCs) measured in China(Part I)[J]. Atmospheric Environment, 2008, 42(25): 6247-6260. |
11 | BrownS K, SimM R, AbramsonM J, et al. Concentrations of volatile organic compounds in indoor air—a review[J]. Indoor Air, 1994, 4(2): 123-134. |
12 | Fernández-MartínezG, López-MahíaP, Muniategui-LorenzoS, et al. Distribution of volatile organic compounds during the combustion process in coal-fired power stations[J]. Atmospheric Environment, 2001, 35(33): 5823-5831. |
13 | ChenY, ShengG, BiX, et al. Emission factors for carbonaceous particles and polycyclic aromatic hydrocarbons from residential coal combustion in China[J]. Environmental Science & Technology, 2005, 39(6): 1861-1867. |
14 | ChaggerH K, JonesJ M, PourkashanianM, et al. The formation of VOC, PAH and dioxins during incineration[J]. Process Safety and Environmental Protection, 2000, 78(1): 53-59. |
15 | PetryT, VitaleD, JoachimF J, et al. Human health risk evaluation of selected VOC, SVOC and particulate emissions from scented candles[J]. Regulatory Toxicology and Pharmacology, 2014, 69(1): 55-70. |
16 | 董小艳, 徐东群. 室内空气中挥发性有机化合物的污染现状及监测和评价方法[J]. 国外医学(卫生学分册), 2007, (3): 148-153. |
DongX Y, XuD Q. Current situation, monitoring and evaluation methods of volatile organic compounds in indoor air[J]. Foreign Medicine (Evectics Section), 2007, (3): 148-153. | |
17 | ShaoM, ZhangY, ZengL, et al. Ground-level ozone in the Pearl River Delta and the roles of VOC and NOx in its production[J]. Journal of Environmental Management, 2009, 90(1): 512-518. |
18 | PittsJ, Van CauwenbercheK, GrosjeanD, et al. Atmospheric reactions of polycyclic aromatic hydrocarbons: facile formation of mutagenic nitro derivatives[J]. Science, 1978, 202(4367): 515-519. |
19 | DengW J, LouieP K K, LiuW K, et al. Atmospheric levels and cytotoxicity of PAHs and heavy metals in TSP and PM2.5 at an electronic waste recycling site in southeast China[J]. Atmospheric Environment, 2006, 40(36): 6945-6955. |
20 | HuangB, LeiC, WeiC, et al. Chlorinated volatile organic compounds (Cl-VOCs) in environment-sources, potential human health impacts, and current remediation technologies[J]. Environment International, 2014, 71: 118-138. |
21 | AmannA, CostelloB D L, MiekischW, et al. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva[J]. Journal of Breath Research, 2014, 8(3): 034001-034017. |
22 | KimK H, JahanS A, LeeJ T. Exposure to formaldehyde and its potential human health hazards[J]. Journal of Environmental Science and Health, Part C, 2011, 29(4): 277-299. |
23 | WangX T, MiaoY, ZhangY, et al. Polycyclic aromatic hydrocarbons (PAHs) in urban soils of the megacity Shanghai: occurrence, source apportionment and potential human health risk[J]. Science of the Total Environment, 2013, 447: 80-89. |
24 | LundstedtS. Analysis of PAHs and their transformation products in contaminated soil and remedial processes [D]. Sweden: UME University, 2003. |
25 | 范志威. 煤燃烧过程中有机污染物的赋存及排放特性的研究[D]. 杭州: 浙江大学, 2005. |
FanZ W. Study of formation and emission characteristics of organic compounds during coal combustion[D]. Hangzhou: Zhejiang University, 2005. | |
26 | 晏蓉, 康忠汉. 煤燃烧排放有机污染物的试验研究[J]. 华中理工大学学报, 1996, (1): 4-7. |
YanR, KangZ H. An experimental study on the organic pollutants discharged from coal combustion[J]. Journal of Huazhong University of Technology, 1996, (1): 4-7. | |
27 | 李晓东, 姚艳, 严建华, 等. 中国部分煤种二氯甲烷萃取液中极性和烃类有机物分布特性研究[J]. 燃料化学学报, 2002, (6): 529-534. |
LiX D, YaoY, YanJ H, et al. Distribution of organic compounds in CH2Cl2 extracted solution of raw coal[J]. Journal of Fuel Chemistry and Technology, 2002, (6): 529-534. | |
28 | 晏蓉, 朱丽华, 朱海晶, 等. 原煤及其飞灰抽提液中有机污染物的研究[J]. 热力发电, 1997, (2): 13-18. |
YanR, ZhuL H, ZhuH J, et al. Study on organic pollutants in extractive solution of coal and its ash[J]. Thermal Power Generation, 1997, (2): 13-18. | |
29 | YuY R, FanX, ZhaoY P, et al. Analysis of soluble organic species of Huolinguole lignite by atmospheric pressure photoionization-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2017, 45(7): 1005-1011. |
30 | 王晓华, 熊玉春, 顾晓华, 等. 几种烟煤CS2萃取物的GC/MS分析[J]. 燃料化学学报, 2002, (1): 72-77. |
WangX H, XiongY C, GuX H, et al. GC/MS analyses of CS2-extraction from several biyuminous coals[J]. Journal of Fuel Chemistry and Technology, 2002, (1): 72-77. | |
31 | ZhaoZ B, LiuK, XieW, et al. Soluble polycyclic aromatic hydrocarbons in raw coals[J]. Journal of Hazardous Materials, 2000, 73(1): 77-85. |
32 | 范志威, 周俊虎, 谷月玲, 等. 顶空固相微萃取与色质联用研究煤中挥发性有机物[J]. 煤炭科学技术, 2004, 32: 53-55. |
FanZ W, ZhouJ H, GuY L, et al. Research on volatile organic matter of coal with top solid phase micro-extraction and color-quality combination[J]. Coal Science and Technology, 2004, 32: 53-55. | |
33 | SolomonP R, SerioM A, SuubergE M. Coal pyrolysis: experiments, kinetic rates and mechanisms[J]. Progress in Energy and Combustion Science, 1992, 18(2): 133-220. |
34 | De La PuenteG, IglesiasM J, FuenteE, et al. Changes in the structure of coals of different rank due to oxidation-effects on pyrolysis behaviour[J]. Journal of Analytical and Applied Pyrolysis, 1998, 47(1): 33-42. |
35 | LiX, MatuschekG, HerreraM, et al. Investigation of pyrolysis of Chinese coals using thermal analysis/mass spectrometry[J]. Journal of Thermal Analysis and Calorimetry, 2003, 71(2): 601-612. |
36 | KobayashiH, HowardJ B, SarofimA F. Coal devolatilization at high temperatures[J]. Symposium (International) on Combustion, 1977, 16(1): 411-425. |
37 | TylerR J. Flash pyrolysis of coals (1): Devolatilization of a Victorian brown coal in a small fluidized-bed reactor[J]. Fuel, 1979, 58(9): 680-686. |
38 | SuubergE M, PetersW A, HowardJ B. Product compositions and formation kinetics in rapid pyrolysis of pulverized coal—implications for combustion[J]. Symposium (International) on Combustion, 1979, 17(1): 117-130. |
39 | GadiouR, BouzidiY, PradoG. The devolatilisation of millimetre sized coal particles at high heating rate: the influence of pressure on the structure and reactivity of the char[J]. Fuel, 2002, 81(16): 2121-2130. |
40 | TomeczekJ, GilS. Volatiles release and porosity evolution during high pressure coal pyrolysis[J]. Fuel, 2003, 82(3): 285-292. |
41 | PoradaS. The influence of elevated pressure on the kinetics of evolution of selected gaseous products during coal pyrolysis[J]. Fuel, 2004, 83(7): 1071-1078. |
42 | GongX, WangZ, DengS, et al. Impact of the temperature, pressure, and particle size on tar composition from pyrolysis of three ranks of Chinese coals[J]. Energy & Fuels, 2014, 28(8): 4942-4948. |
43 | JiaL, WengJ, WangY, et al. Online analysis of volatile products from bituminous coal pyrolysis with synchrotron vacuum ultraviolet photoionization mass spectrometry[J]. Energy & Fuels, 2013, 27(2): 694-701. |
44 | XuJ Y, ZhuoJ K, ZhuY, et al. Analysis of volatile organic pyrolysis products of bituminous and anthracite coals with single-photon ionization time-of-flight mass spectrometry and gas chromatography/mass spectrometry[J]. Energy & Fuels, 2017, 31(1): 730-737. |
45 | XuJ Y, ZhuoJ K, YaoQ. Prediction of ethylene and propylene release during coal pyrolysis with modified CPD model[J]. Fuel, 2018, 222: 544-549. |
46 | DykeP H, FoanC, FiedlerH. PCB and PAH releases from power stations and waste incineration processes in the UK[J]. Chemosphere, 2003, 50(4): 469-480. |
47 | 刘淑琴, 庞旭林, 王媛媛, 等. 不同煤种热解多环芳烃的生成分布特征研究[J]. 煤炭转化, 2011, (1): 1-6. |
LiuS Q, PangX L, WangY Y, et al. Study on the distribution characteristic of polycyclic aromatic hydrocarbons during pyrolysis of different coal ranks[J]. Coal Conversion, 2011, (1): 1-6. | |
48 | 李晓东, 祁明峰, 尤孝方, 等. 烟煤燃烧过程中多环芳烃生成研究[J]. 中国电机工程学报, 2002, (12): 127-132. |
LiX D, QiM F, YouX F, et al. Study on the formation of polycyclic aromatic hydrocarbons (PAH) mechanism in bituminous coal combustion process[J]. Proceedings of the CSEE, 2002, (12): 127-132. | |
49 | 李晓东, 傅钢, 尤孝方, 等. 不同煤种燃烧生成多环芳烃的研究[J]. 热能动力工程, 2003, (18): 125-127. |
LiX D, FuG, YouX F, et al. Study on the generation of polycyclic aromatic hydrocarbons by different types of coal combustion[J]. Journal of Engineering for Thermal Energy and Power, 2003, (18): 125-127. | |
50 | 张浩原, 刘桂建, 薛翦. 不同溶剂对提取原煤中PAHs种类、含量与分布的影响[J]. 环境化学, 2005, (24): 613-616. |
ZhangH Y, LiuG J, XueJ. The impact on the species, concentration and distribution of PAHs extracted by different solvents from raw coal[J]. Environmental Chemistry, 2005, (24): 613-616. | |
51 | 张浩原. 淮北煤田煤中多环芳烃析出规律及环境意义[D]. 合肥: 中国科学技术大学, 2005. |
ZhangH Y. Precipitation regularity and environmental significance of polycyclic aromatic hydrocarbons in Huaibei coalfield[D]. Hefei: University of Science and Technology of China, 2005. | |
52 | XueJ, LiuG J, NiuZ Y, et al. Factors that influence the extraction of polycyclic aromatic hydrocarbons from coal[J]. Energy & Fuels, 2007, 21(2): 881-890. |
53 | 姜楠, 张丽萍, 孟彦如, 等. 煤燃烧过程中多环芳烃生成影响因素分析[J]. 中州煤炭, 2012, (1): 12-14. |
JiangN, ZhangL P, MengY R, et al. Analysis on influencing factors of polycyclic aromatic hydrocarbons formation during coal combustion[J]. Zhongzhou Coal, 2012, (1): 12-14. | |
54 | 晏蓉, 朱海晶, 刘皓, 等. 河南贫煤不同温度燃烧烟气中环烃类产物的分析研究[J]. 分析试验室, 1996, (2): 13-16. |
YanR, ZhuH J, LiuH, et al. Studies on compositions of products from coal combustion of Henan coal at different temperatures[J]. Journal of Analysis and Testing, 1996, (2): 13-16. | |
55 | KnoblochT E W. Identification of some polar polycyclic compounds in emissions from brown-coal-fired residential stoves[J]. Journal of High Resolution Chromatography, 1993, 16(4): 239-242. |
56 | 倪明江, 尤孝方, 李晓东, 等. 不同煤燃烧方式多环芳烃生成特性的研究[J]. 动力工程学报, 2004, (24) : 400-405. |
NiM J, YouX F, LiX D, et al. Study of PAHs formation from different kinds of coal combustion process[J]. Power Engineering, 2004, (24): 400-405. | |
57 | 傅钢. 煤燃烧过程中多环芳烃类有机污染物排放特性的研究[D]. 杭州: 浙江大学, 2002. |
FuG. Study on the emission characteristic of polycyclic aromatic hydrocarbons from coal combustion[D]. Hangzhou: Zhejiang University, 2002. | |
58 | MastralA M, CallN M S. A review on polycyclic aromatic hydrocarbon (PAH) emissions from energy generation[J]. Environmental Science & Technology, 2000, 34(15): 3051-3057. |
59 | MastralA M, CallN M S, MurilloR, et al. Assessment of PAH emissions as a function of coal combustion variables in fluidised bed (2): Air excess percentage[J]. Fuel, 1998, 77(13): 1513-1516. |
60 | GarciaJ P, Beyne-MascletS, MouvierG, et al. Emissions of volatile organic compounds by coal-fired power stations[J]. Atmospheric Environment Part A General Topics, 1992, 26(9): 1589-1597. |
61 | Fernández-MartínezG, López-VilariñoJ M, López-MahíaP, et al. Determination of volatile organic compounds in emissions by coal-fired power stations from Spain[J]. Environmental Technology, 2001, 22(5): 567-575. |
62 | Moreira Dos SantosC Y, De Almeida AzevedoD, De Aquino NetoF R. Atmospheric distribution of organic compounds from urban areas near a coal-fired power station[J]. Atmospheric Environment, 2004, 38(9): 1247-1257. |
63 | PudasaineeD, KimJ H, LeeS H, et al. Hazardous air pollutants emission from coal and oil-fired power plants[J]. Asia-Pacific Journal of Chemical Engineering, 2010, 5(2): 299-303. |
64 | ShiJ, DengH, BaiZ, et al. Emission and profile characteristic of volatile organic compounds emitted from coke production, iron smelt, heating station and power plant in Liaoning Province, China[J]. Science of the Total Environment, 2015, 515/516: 101-108. |
65 | SzpunarC B. Air toxic emissions from the combustion of coal: identifying and quantifying hazardous air pollutants from US coals[R]. United States: IAEA, 1992. |
66 | 赵承美, 孙俊民, 刘惠永. 褐煤与烟煤燃烧排放可吸入颗粒物的特性[J]. 环境科学与技术, 2010, (33): 146-149. |
ZhaoC M, SunJ M, LiuH Y. Characteristics of inhalable particulate matters from lignite and bituminous coal combustion[J]. Environmental Science & Technology, 2010, (33): 146-149. | |
67 | 赵承美, 赵新富, 孙俊民, 等. 燃煤电厂排放可吸入颗粒物中多环芳烃的分布特征[J]. 信阳师范学院学报(自然科学版), 2008, 21: 203-205. |
ZhaoC M, ZhaoX F, SunJ M, et al. Distribution characteristics of polycyclic aromatic hydrocarbons in inhalant particles which coal-fired plant emissions[J]. Journal of Xinyang Normal University(Natural Science Edition), 2008, 21: 203-205. | |
68 | WangR, LiuG, ZhangJ. Variations of emission characterization of PAHs emitted from different utility boilers of coal-fired power plants and risk assessment related to atmospheric PAHs[J]. Science of the Total Environment, 2015, 538: 180-190. |
69 | LiJ, LiX, LiM, et al. Influence of air pollution control devices on the polycyclic aromatic hydrocarbon distribution in flue gas from an ultralow-emission coal-fired power plant[J]. Energy & Fuels, 2016, 30(11): 9572-9579. |
70 | LiJ, QiZ, LiM, et al. Physical and chemical characteristics of condensable particulate matter from an ultralow-emission coal-fired power plant[J]. Energy & Fuels, 2017, 31(2): 1778-1785. |
71 | LiJ, LiX, ZhouC, et al. Correlation between polycyclic aromatic hydrocarbon concentration and particulate matter during the removal process of a low-low temperature electrostatic precipitator[J]. Energy & Fuels, 2017, 31(7): 7256-7262. |
72 | LiJ, LiX, ZhouC, et al. Study on the influencing factors of the distribution characteristics of polycyclic aromatic hydrocarbons in condensable particulate matter[J]. Energy & Fuels, 2017, 31(12): 13233-13238. |
73 | LiX, LiJ, WuD, et al. Removal effect of the low-low temperature electrostatic precipitator on polycyclic aromatic hydrocarbons[J]. Chemosphere, 2018, 211: 44-49. |
74 | 梁斌, 白浩隆, 冯强, 等. 民用燃煤颗粒物及多环芳烃排放特性[J].化工学报, 2019, 70(8): 2888-2897. |
LiangB, BaiH L, FengQ, et al. Emissions of particulate matter and polycyclic aromatic hydrocarbons from household coal combustions[J]. CIESC Journal, 2019, 70(8): 2888-2897. | |
75 | LiC, MiH, LeeW, et al. PAH emission from the industrial boilers[J]. Journal of Hazardous Materials, 1999, 69(1): 1-11. |
76 | 宋婷. 环境空气和固定污染源中挥发性有机物监测方法探讨[J]. 环境与发展, 2018, (10): 125-126. |
SongT. Monitoring methods of volatile organic compounds in ambient air and stationary sources[J]. Environment and Development, 2018, (10): 125-126. | |
77 | GallegoE, RocaF J, PeralesJ F, et al. Comparative study of the adsorption performance of a multi-sorbent bed (Carbotrap, Carbopack X, Carboxen 569) and a Tenax TA adsorbent tube for the analysis of volatile organic compounds (VOCs)[J]. Talanta, 2010, 81(3): 916-924. |
78 | HelmigD, MüllerJ, KleinW. Volatile organic substances in a forest atmosphere[J]. Chemosphere, 1989, 19(8): 1399-1412. |
79 | GallegoE, RocaF J, PeralesJ F, et al. Comparative study of the adsorption performance of an active multi-sorbent bed tube (Carbotrap, Carbopack X, Carboxen 569) and a Radiello® diffusive sampler for the analysis of VOCs[J]. Talanta, 2011, 85(1): 662-672. |
80 | MartinN A, MarlowD J, HendersonM H, et al. Studies using the sorbent Carbopack X for measuring environmental benzene with Perkin–Elmer-type pumped and diffusive samplers[J]. Atmospheric Environment, 2003, 37(7): 871-879. |
81 | OchiaiN, TsujiA, NakamuraN, et al. Stabilities of 58 volatile organic compounds in fused-silica-lined and SUMMA polished canisters under various humidified conditions[J]. Journal of Environmental Monitoring, 2002, 4(6): 879-889. |
82 | EvansJ C, HuckabyJ L, MitroshkovA V, et al. 32-Week holding-time study of SUMMA polished canisters and triple sorbent traps used to sample organic constituents in radioactive waste tank vapor headspace[J]. Environmental Science & Technology, 1998, 32(21): 3410-3417. |
83 | WangY, RaihalaT S, JackmanA P, et al. Use of Tedlar bags in VOC testing and storage: evidence of significant VOC losses[J]. Environmental Science & Technology, 1996, 30(10): 3115-3117. |
84 | MastralA M, CallN M, MayoralC, et al. Polycyclic aromatic hydrocarbon emissions from fluidized bed combustion of coal[J]. Fuel, 1995, 74(12): 1762-1766. |
85 | YanY, YangC, PengL, et al. Emission characteristics of volatile organic compounds from coal-, coal gangue-, and biomass-fired power plants in China[J]. Atmospheric Environment, 2016, 143: 261-269. |
[1] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[2] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[3] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[4] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[5] | 衣思敏, 马亚丽, 刘伟强, 张金帅, 岳岩, 郑强, 贾松岩, 李雪. 微晶菱镁矿蒸氨及水化动力学研究[J]. 化工学报, 2023, 74(4): 1578-1586. |
[6] | 陈瑞哲, 程磊磊, 顾菁, 袁浩然, 陈勇. 纤维增强树脂复合材料化学回收技术研究进展[J]. 化工学报, 2023, 74(3): 981-994. |
[7] | 张娜, 潘鹤林, 牛波, 张亚运, 龙东辉. 酚醛树脂热裂解反应机理的密度泛函理论研究[J]. 化工学报, 2023, 74(2): 843-860. |
[8] | 郝泽光, 张乾, 高增林, 张宏文, 彭泽宇, 杨凯, 梁丽彤, 黄伟. 生物质与催化裂化油浆共热解协同作用研究[J]. 化工学报, 2022, 73(9): 4070-4078. |
[9] | 邵健, 冯军宗, 柳凤琦, 姜勇刚, 李良军, 冯坚. 酚醛树脂基炭微球结构调控与功能化制备研究进展[J]. 化工学报, 2022, 73(9): 3787-3801. |
[10] | 沈嘉辉, 王侃宏, 郁达伟, 胡大洲, 魏源送. 游离氨调理污泥厌氧消化优化产甲烷过程与强化有机物释放[J]. 化工学报, 2022, 73(9): 4147-4155. |
[11] | 陈晨, 杨倩, 陈云, 张睿, 刘冬. 不同氧浓度下煤挥发分燃烧的化学动力学研究[J]. 化工学报, 2022, 73(9): 4133-4146. |
[12] | 肖皓宇, 杨海平, 张雄, 陈应泉, 王贤华, 陈汉平. 塑料催化热解制备高附加值产品的研究进展[J]. 化工学报, 2022, 73(8): 3461-3471. |
[13] | 唐恺鸿, 何晓峰, 徐桂秋, 于洋, 刘啸凤, 葛铁军, 张爱玲. 酚醛泡沫的燃烧行为及阻燃研究进展[J]. 化工学报, 2022, 73(8): 3483-3500. |
[14] | 刘新华, 韩振南, 韩健, 梁斌, 张楠, 胡善伟, 白丁荣, 许光文. 基于热解与燃烧反应重构的低NO x 解耦燃烧原理与技术[J]. 化工学报, 2022, 73(8): 3355-3368. |
[15] | 陈玉弓, 陈昊, 黄耀松. 基于分子反应动力学模拟的六甲基二硅氧烷热解机理研究[J]. 化工学报, 2022, 73(7): 2844-2857. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||