化工学报 ›› 2019, Vol. 70 ›› Issue (S2): 161-168.DOI: 10.11949/0438-1157.20190622
收稿日期:
2019-06-04
修回日期:
2019-07-10
出版日期:
2019-09-06
发布日期:
2019-09-06
通讯作者:
郭雪岩
作者简介:
姚强(1990—),男,硕士研究生,基金资助:
Qiang YAO(),Xueyan GUO(
),Fan YANG,Zhiyuan WANG
Received:
2019-06-04
Revised:
2019-07-10
Online:
2019-09-06
Published:
2019-09-06
Contact:
Xueyan GUO
摘要:
球床反应堆燃料球表面局部热点的存在影响到反应堆的安全,其形成与燃料球尺度的冷却剂局部流动密切相关。为保证计算结果的准确性和物理真实性,采用大涡模拟(LES)方法和全结构网格对面心立方(FCC)单元面接触排列方式的局部流动和传热进行了数值分析。研究分析了非定常流动的特点及其对对流换热的影响。燃料球表面的时均温度分布表明燃料球表面存在稳定的热点或热斑,也发现瞬时温度波动较大,存在明显高于时均值的瞬时热点。
中图分类号:
姚强, 郭雪岩, 杨帆, 王志远. 球床反应堆面心立方单元局部流动与传热的数值分析[J]. 化工学报, 2019, 70(S2): 161-168.
Qiang YAO, Xueyan GUO, Fan YANG, Zhiyuan WANG. Numerical analysis of local flow and heat transfer of FCC domain in pebble bed reactor[J]. CIESC Journal, 2019, 70(S2): 161-168.
参数 | 氦气 | 石墨 |
---|---|---|
密度/(kg/m3) | 5.36 | 1750 |
动力黏度/(N·s/m2) | 3.69e-5 | — |
热导率/(W/(m·K)) | 0.3047 | 25 |
比热容/(J/(kg·K)) | 5441.6 | 1690 |
表1 物性参数[14]
Table 1 Physical property parameters[14]
参数 | 氦气 | 石墨 |
---|---|---|
密度/(kg/m3) | 5.36 | 1750 |
动力黏度/(N·s/m2) | 3.69e-5 | — |
热导率/(W/(m·K)) | 0.3047 | 25 |
比热容/(J/(kg·K)) | 5441.6 | 1690 |
图12 中心球表面时均温度分布及距球面0.5 mm处时均速度分布
Fig.12 Time-averaged temperature distributions on surface of central pebble and time-averaged velocity distributions at 0.5 mm away from sphere
图13 燃料球外围0.5 mm处流场区域时均速度与时均温度梯度夹角的分布
Fig.13 Time-mean distributions of angle between velocity and temperature gradient in flow field at 0.5 mm away from fuel sphere
1 | 周云龙, 陈听宽, 陈学俊. 200 MW模块式高温气冷反应堆蒸汽发生器设计[J]. 核科学与工程, 1992, (1): 25-34. |
ZhouY L, ChenT K, ChenX J. Design of 200 MW modular high temperature gas cooled reactor steam generator[J]. Chinese Journal of Nuclear Science and Engineering, 1992, (1): 25-34. | |
2 | 雷鸣泽. 高温气冷堆产业推广及应用前景[J]. 中国核电, 2018, 11(1): 26-29. |
LeiM Z. Commercialization and application prospect of HTR[J]. China Nuclear Power, 2018, 11(1): 26-29. | |
3 | 吴宗鑫. 我国高温气冷堆的发展[J]. 核动力工程, 2000, 21(1): 39-43. |
WuZ X. Development of high temperature gas cooled reactors in China[J]. Nuclear Power Engineering, 2000, 21(1): 39-43. | |
4 | 符晓铭, 王捷. 高温气冷堆在我国的发展综述[J]. 现代电力, 2006, 23(5): 70-75. |
FuX M, WangJ. Overview of development of high temperature gas cooled reactors in China[J]. Modern Electric Power, 2006, 23(5): 70-75. | |
5 | 吴宗鑫, 肖宏才. 模块式高温气冷堆的安全特性[J]. 高技术通讯, 1994, (11): 34-38. |
WuZ X, XiaoH C. Safety characteristics of modular high temperature gas cooled reactor[J]. Chinese High Technology Letters, 1994, (11): 34-38. | |
6 | TangC H, TangY P, ZhuJ G, et al. Design and manufacture of the fuel element for the 10 MW high temperature gas-cooled reactor[J]. Nuclear Engineering and Design, 2002, 218(1/2/3): 91-102. |
7 | JayarajuS T, RoelofsF, KomenE M J , et al. RANS modeling of fluid flow and dust deposition in nuclear pebble-beds[J]. Nuclear Engineering and Design, 2016, 308: 222-237. |
8 | WangX L, ZhengJ, ChenH L. A prediction model for the effective thermal conductivity of mono-sized pebble beds[J]. Fusion Engineering and Design, 2016, 103: 136-151. |
9 | LeeJ J, ParkG C, KimK Y, et al. Numerical treatment of pebble contact in the flow and heat transfer analysis of a pebble bed reactor core[J]. Nuclear Engineering & Design, 2007, 237(22): 2183-2196. |
10 | HassanY A. Large eddy simulation in pebble bed gas cooled core reactors[J]. Nuclear Engineering & Design, 2008, 238(3): 530-537. |
11 | FerngY M, LinK Y. CFD investigation of thermal-hydraulic characteristics in a PBR core using different contact treatments between pebbles[J]. Annals of Nuclear Energy, 2014, 72(5): 156-165. |
12 | ShamsA, RoelofsF, KomenE M J, et al. Quasi-direct numerical simulation of a pebble bed configuration (Ⅰ): Flow (velocity) field analysis[J]. Nuclear Engineering & Design, 2013, 263(1): 473-489. |
13 | 蒋旭, 郭雪岩. 球床反应堆流动与传热的CFD分析: 燃料球尺度[J]. 能源工程, 2017, (6): 8-13. |
JiangX, GuoX Y. CFD analysis on flow and heat transfer in pebble bed reactor: pebble scale[J]. Energy Engineering, 2017, (6): 8-13. | |
14 | ShamsA, RoelofsF, KomenE M J, et al. Optimization of a pebble bed configuration for quasi-direct numerical simulation[J]. Nuclear Engineering and Design, 2012, 242: 331-340. |
15 | PopeS. Turbulent Flows [M]. Cambridge: Cambridge University Press, 2000. |
16 | ShamsA, RoelofsF, KomenE M J, et al. Numerical simulation of nuclear pebble bed configurations [J]. Nuclear Engineering & Design, 2015, 290: 51-64. |
[1] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[2] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[3] | 朱风, 陈凯琳, 黄小凤, 鲍银珠, 李文斌, 刘嘉鑫, 吴玮强, 高王伟. KOH改性电石渣脱除羰基硫的性能研究[J]. 化工学报, 2023, 74(6): 2668-2679. |
[4] | 邵远哲, 赵忠盖, 刘飞. 基于共同趋势模型的非平稳过程质量相关故障检测方法[J]. 化工学报, 2023, 74(6): 2522-2537. |
[5] | 李正涛, 袁志杰, 贺高红, 姜晓滨. 疏水界面上的NaCl液滴蒸发过程内环流调控机制研究[J]. 化工学报, 2023, 74(5): 1904-1913. |
[6] | 葛泽峰, 吴雨青, 曾名迅, 查振婷, 马宇娜, 侯增辉, 张会岩. 灰化学成分对生物质气化特性的影响规律[J]. 化工学报, 2023, 74(5): 2136-2146. |
[7] | 郑书闽, 郭鹏程, 颜建国, 王帅, 李文博, 周淇. 微小通道内过冷流动沸腾阻力特性实验及预测研究[J]. 化工学报, 2023, 74(4): 1549-1560. |
[8] | 李纪元, 李金旺, 周刘伟. 不同扰流结构冷板传热性能研究[J]. 化工学报, 2023, 74(4): 1474-1488. |
[9] | 吴选军, 王超, 曹子健, 蔡卫权. 数据与物理信息混合驱动的固定床吸附穿透深度学习模型[J]. 化工学报, 2023, 74(3): 1145-1160. |
[10] | 鲁军辉, 李俊明. H2O-CO2、H2O-N2、H2O-He水平管外自然对流凝结换热特性研究[J]. 化工学报, 2022, 73(9): 3870-3879. |
[11] | 魏琳, 郭剑, 廖梓豪, Dafalla Ahmed Mohmed, 蒋方明. 空气流量对空冷燃料电池电堆性能的影响研究[J]. 化工学报, 2022, 73(7): 3222-3231. |
[12] | 罗佳, 吴双应, 肖兰, 周世耀, 陈志莉. 撞击速度对连续液滴撞击热圆柱壁面局部传热特性影响的实验[J]. 化工学报, 2022, 73(7): 2944-2951. |
[13] | 董彬, 薛永浩, 梁坤峰, 袁争印, 王林, 周训. 相变微胶囊悬浮液喷淋换热特性实验研究[J]. 化工学报, 2022, 73(7): 2971-2981. |
[14] | 施炜斌, 龙姗姗, 杨晓钢, 蔡心悦. 计及气泡诱导与剪切湍流的气泡破碎、湍流相间扩散及传质模型[J]. 化工学报, 2022, 73(6): 2573-2588. |
[15] | 许世佩, 王超, 李庆远, 张炳康, 许世伟, 张雪琴, 王诗颖, 丛梦晓. 氧化钙对油基钻屑热脱附产物影响的研究[J]. 化工学报, 2022, 73(4): 1724-1731. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 286
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||