1 |
Gracia A , Cabeza L F . Phase change materials and thermal energy storage for buildings[J]. Energy and Buildings, 2015, 103: 414-419.
|
2 |
Sharma R K , Ganesan P , Tyagi V V , et al . Developments in organic solid-liquid phase change materials and their applications in thermal energy storage[J]. Energy Conversion and Management, 2015, 95: 193-228.
|
3 |
Lin Y X , Jia Y T , Alva G , et al . Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2730-2742.
|
4 |
Soares N , Costa J J , Gaspar A R , et al . Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency[J]. Energy and Buildings, 2013, 59: 82-103
|
5 |
Zhang Y , Zhou M , Huang F , et al . Effect of graphene aerogel on thermal behavior of phase change materials for thermal management [J]. Solar Energy Materials and Solar Cells, 2013, 113: 195-200.
|
6 |
Karaipekli A , Sarı A , Kaygusuz K . Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications[J]. Renewable Energy, 2007, 32: 2201-2210.
|
7 |
Mehrali M , Latibari S T , Mehrali M , et al . Preparation and characterization of palmitic acid/graphene nanoplatelets composite with remarkable thermal conductivity as a novel shape-stabilized phase change material [J]. Applied Thermal Engineering, 2013, 61(2): 633-640.
|
8 |
Tang F , Su D , Tang Y J , et al . Synthesis and thermal properties of fatty acid eutectics and diatomite composites as shape-stabilized phase change materials with enhanced thermal conductivity[J]. Solar Energy Materials and Solar Cells, 2015, 141: 218-224.
|
9 |
Bao Y H , Pan W , Wang T W , et al . Microencapsulation of fatty acid as phase change material for latent heat storage[J]. Journal of Energy Engineering, 2011, 137: 214-219.
|
10 |
Zhang T , Wang Y , Shi H , et al . Fabrication and performances of new kind microencapsulated phase change material based on stearic acid core and polycarbonate shell[J]. Energy Conversion and Management, 2012, 64: 1-7.
|
11 |
Pan L , Tao Q , Zhang S , et al . Preparation, characterization and thermal properties of micro-encapsulated phase change materials[J]. Solar Energy Materials and Solar Cells, 2012, 98: 66-70.
|
12 |
Sarı A , Biçer A . Preparation and thermal energy storage properties of building material-based composites as novel form-stable PCMs[J]. Energy and Buildings, 2012, 51: 73-83.
|
13 |
Sarı A , Karaipekli A , Alkan C . Preparation, characterization and thermal properties of lauric acid/expanded perlite as novel form-stable composite phase change material[J]. Chemical Engineering Journal, 2009, 55: 899-904.
|
14 |
Wang Y , Zheng H , Feng H X , et al . Effect of preparation methods on the structure and thermal properties of stearic acid/activated montmorillonite phase change materials[J]. Energy and Buildings, 2012, 47: 467-473.
|
15 |
Zhou M , Lin T , Huang F , et al . Highly conductive porous graphene/ceramic composites for heat transfer and thermal energy storage[J]. Advanced Functional Materials, 2013, 23(18): 2263-2269.
|
16 |
Wang Z J , Alaniz J E , Jang W Y , et al . Thermal conductivity of nanocrystalline silicon: importance of grain size and frequency-dependent mean free paths[J]. Nano Letters, 2011, 11(6): 2206-2213.
|
17 |
Larsson K , Sydow E . The crystal structure of the B-form of fatty acids[J]. Acta Chemica Scandinavica, 1996, 20(5): 1203-1207.
|
18 |
Fu X , Liu Z , Wu B , et al . Preparation and thermal properties of stearic acid/diatomite composites as form-stable phase change materials for thermal energy storage via direct impregnation method[J]. Journal of Thermal Analysis and Calorimetry, 2016, 123(2): 1173-1181.
|
19 |
Ladd J C , Moran B , Hoover W G . Lattice thermal conductivity: a comparison of molecular dynamics and anharmonic lattice dynamics[J]. Physical Review B, 1986, 34(8): 5058-5064.
|
20 |
Hu M , Giapis K P , Goicochea J V , et al . Significant reduction of thermal conductivity in Si/Ge core-shell nanowires[J]. Nano Letters, 2011, 11: 618-623.
|
21 |
Hu M , Zhang X L , Poulikakos D , et al . Large “near junction” thermal resistance reduction in electronics by interface nanoengineering[J]. International Journal of Heat and Mass Transfer, 2011, 54: 5183-5191.
|
22 |
Hu M , Zhang X L , Poulikakos D . Anomalous thermal response of silicene to uniaxial stretching[J]. Physical Review B, 2013, 87: 195417.
|
23 |
Qiu L , Zou H Y , Feng Y H , et al . Enhancing the interfacial interaction of carbon nanotubes fibers by Au nanoparticles with improved performance of the electrical and thermal conductivity[J]. Carbon, 2019, 141: 497-505.
|
24 |
Zhang X L , Jiang J W . Thermal conductivity of zeolitic imidazolate framework-8: a molecular simulation study[J]. Journal of Physical Chemistry C, 2013, 117: 18441-18447.
|
25 |
Qiu L , Zou H Y , Zhu N , et al . Iodine nanoparticle-enhancing electrical and thermal transport for carbon nanotube fibers[J]. Applied Thermal Engineering, 2018, 141: 913-920.
|
26 |
Plimption S . Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19
|
27 |
Klauda J B , Venable R M , Freites J A , et al . Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types[J]. Journal of Physical Chemistry B, 2010, 114: 7830-7843.
|
28 |
Klauda J B , Monje V , Kim T , et al . Improving the CHARMM force field for polyunsaturated fatty acid chains[J]. The Journal of Physical Chemistry B, 2012, 116(31): 9424-9431.
|
29 |
Nosé S . A unified formulation of the constant temperature molecular dynamics methods[J]. The Journal of Chemical Physics, 1984, 81: 511-519.
|
30 |
Hoover W . Canonical dynamics: equilibrium phase-space distributions[J]. Physical Review A, 1985, 31(3): 1695-1697.
|
31 |
Singh V , Bougher T L , Weathers A , et al . High thermal conductivity of chain-oriented amorphous polythiophene[J]. Nature Nanotechnology, 2014, 9: 384-390.
|