化工学报 ›› 2022, Vol. 73 ›› Issue (6): 2573-2588.doi: 10.11949/0438-1157.20220465

• 流体力学与传递现象 • 上一篇    下一篇

计及气泡诱导与剪切湍流的气泡破碎、湍流相间扩散及传质模型

施炜斌1,2(),龙姗姗2,杨晓钢2(),蔡心悦2   

  1. 1.华侨大学机电及自动化学院,福建 厦门 361021
    2.宁波诺丁汉大学机械、材料与制造工程系,浙江 宁波 315100
  • 收稿日期:2022-03-31 修回日期:2022-05-18 出版日期:2022-06-05 发布日期:2022-06-30
  • 通讯作者: 杨晓钢 E-mail:weibin.shi@hqu.edu.cn;Xiaogang.Yang@nottingham.edu.cn
  • 作者简介:施炜斌(1991—),男,博士,讲师,weibin.shi@hqu.edu.cn
  • 基金资助:
    国家自然科学基金项目(91534118);福建省自然科学基金项目(2021J01296)

Bubble breakage, turbulence dispersion and mass transfer model considering the joint effects of bubble-induced turbulence and shear turbulence

Weibin SHI1,2(),Shanshan LONG2,Xiaogang YANG2(),Xinyue CAI2   

  1. 1.College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, Fujian, China
    2.Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham, Ningbo 315100, Zhejiang, China
  • Received:2022-03-31 Revised:2022-05-18 Published:2022-06-05 Online:2022-06-30
  • Contact: Xiaogang YANG E-mail:weibin.shi@hqu.edu.cn;Xiaogang.Yang@nottingham.edu.cn

摘要:

在以鼓泡塔为代表的气液鼓泡流动中,存在着气泡诱导湍流(BIT)和剪切湍流两种湍流机制,并且二者在不同的时间、空间范围内既相互竞争又共同作用。受制于BIT动能能谱的形式和特性不够完整清晰,过去的研究中关于BIT如何对气泡破碎聚并、相间作用力、相间传热传质等相间相互作用过程产生影响的结论比较模糊。因此,本文在具有波数κ-3特性的BIT能谱的基础上,提出了在不同工况下考虑BIT与剪切湍流共同作用的研究思路。研究结果表明,考虑两种湍流机制的气泡破碎模型和湍流相间扩散模型对BIT在整体或局部占据不同程度主导地位的情况,都能很好地捕捉气液鼓泡流动的动力学特性,为进一步准确揭示气液相间传质过程的内在机理提供了基础。

关键词: 气泡, 湍流, 传质, 种群平衡, 大涡模拟, 气液两相流, 鼓泡塔

Abstract:

In the gas-liquid bubbling flow represented by the bubble column, there are two turbulence mechanisms, the bubble induced turbulence (BIT) and the shear turbulence, and they both compete and work together in different time and space ranges. There are uncertainties remain in how BIT affects the bubble breakage and coalescence, the interphase interaction forces and the mass transfer, due to the limited understanding of the BIT energy spectrum. Considering the joint effects of bubble-induced turbulence and shear turbulence, we proposed the bubble breakage model and the turbulence dispersion force model in dealing with the global or the local dominance of BIT. For different operating conditions, these models have performed well in capturing the dynamic behaviors of both the gas- and the liquid-phase, which offers fresh insights into understanding the mechanisms of the interphase mass transfer process in the gas-liquid bubbly flows.

Key words: bubble, turbulent flow, mass transfer, population balance, large eddy simulation, gas-liquid flow, bubble column

中图分类号: 

  • TQ 021.1

表1

RSM湍流模型方程"

模型方程
ρui'uj'ˉ输运方程

?αlρlui'uj'ˉ?t+?αlρlukui'uj'ˉ?xk=??xkαlμl+μtσk?ui'uj'ˉ?xk+αlPij+αl?ij-23δijαlρlε+αlSijBIT

(3)

湍动能产生项Pij=-ρlui'uk'ˉ?uj?xk+uj'uk'ˉ?ui?xk (4)
压力-应变项?ij=?ij,1+?ij,2+?ij,1W+?ij,2W=-C1ρlεkui'uj'ˉ-23kδij-C2ρlεkPij-13trPδij-C1Wρlεkuk'um'ˉnknmδij-32uk'ui'ˉnknj-32uk'uj'ˉnknik3/2ε1ClyW2-C2W?km,2nknmδij-32?ik,2nknj-32?jk,2nknik3/2ε1ClyW2 (5)

湍流耗散率

输运方程

?αlρlε?t+??xiαlρlεui=??xjαlμl+μtσε?ε?xj+αlρlεkC1εu'iu'jˉ?ui?xk-C2εε+αlSεBIT

(6)

湍动能k=12i=1,2,3ui'uj' (7)

表2

相间作用力模型方程"

作用力方程
曳力MD=34CDdbρlαgug-ulug-ul (15)
升力Mlift=Clρlαgug-ul×?×ul (16)
虚拟质量力MVM=CVMρlαgduldtl-dugdtg (17)

表3

气泡破碎模型方程的比较"

项目Luo and Svendsen模型考虑BIT的气泡破碎模型
能谱函数

Eκ=Cκε23κ-53

Cκ1.5

Eκ=δlClε23κ-53+δbCbαgUslipνκ-3 (29)

δlδb为开关函数

ClCb取动态变化值

涡旋平均脉动速度

uˉλ=β12ελ13

β2.0

uˉλ=Cλ12CbαgUslipνλ (30)
湍流涡旋数密度

fλ=C31-αλ4

C3=1522π23Γ130.822

fλ=C31-αλ4 (31)

C3=12πCλ2π2

涡旋-气泡碰撞概率密度函数

ωBTdi,λ=C41-αniεdi131+ξ2diξ113

C4=π4C3β120.923

ωBTdi,λ=C41-αni1+ξ2diξ3CbαgUslipν (32)

C4=π4C3CλCb12

平均湍动能eˉdi,λ=πβ12ρlεdi23di3ξ113eˉdi,λ=π12Cλρlλ5CbαgUslipν (33)
破碎速率

ΩBdidj=0.9231-α×

niεd213ξmin11+ξ2ξ113exp-12σCfβρlε23di53ξ113dξ

ΩBdidj=0.9231-αniεd213×

Λdi11+ξ2ξ113exp-12σCfβρlε23di53ξ113dξ+C41-α × (34)

niCbαgUslipνξminΛdi1+ξ2ξ3exp-12σCfβρlCbαgUslipνdi3ξ5dξ

图1

亚格子尺度液相湍流脉动引起的气泡质心改变示意图"

表4

模拟的气液体系实验参数及主要模型选择"

Case实验塔径/m高度/m表观气速/(m/s)静液位高度/m测量高度/m湍流模型湍流扩散破碎模型
Case 1Gemello等[36-37]0.43.60.161.61.5RSMLuo and Sevndsen
Case 2Gemello等[36-37]0.43.60.161.61.5RSM

Luo and Sevndsen

ΩB’(didj )=10ΩB(didj )

Case 3Gemello等[36-37]0.43.60.161.61.5RSM式(34)
Case 4Guan等[38]0.151.60.081.20.8RSMLuo and Sevndsen
Case 5Guan等[38]0.151.60.081.20.8RSM式(34)
Case 6Sommerfeld等[17]0.141.40.00290.650.325LESBurns等[39]
Case 7Sommerfeld等[17]0.141.40.00290.650.325LES式(43)

图2

网格设置示意图"

图3

网格合理性验证结果"

图4

不同破碎模型模拟结果与实验结果对比"

图5

不同破碎模型模拟的气泡尺寸分布对比"

图6

不同破碎模型模拟的气含率和气泡尺寸分布对比"

图7

液相速度矢量图"

图8

气泡上升速度径向分布"

图9

通过LES获得的湍流动能能谱"

图10

不同尺度的气泡与湍流涡旋接触示意图"

图11

气液相间传质系数模拟结果对比"

1 Luo H A, Svendsen H F. Theoretical model for drop and bubble breakup in turbulent dispersions[J]. AIChE Journal, 1996, 42(5): 1225-1233.
2 Lehr F, Millies M, Mewes D. Bubble-size distributions and flow fields in bubble columns[J]. AIChE Journal, 2002, 48(11): 2426-2443.
3 Andersson R, Andersson B. Modeling the breakup of fluid particles in turbulent flows[J]. AIChE Journal, 2006, 52(6): 2031-2038.
4 Wang T F, Wang J F, Jin Y. A novel theoretical breakup kernel function for bubbles/droplets in a turbulent flow[J]. Chemical Engineering Science, 2003, 58(20): 4629-4637.
5 Han L C, Fu J, Li M, et al. A theoretical unsteady-state model for kL of bubbles based on the framework of wide energy spectrum[J]. AIChE Journal, 2016, 62(4): 1007-1022.
6 Zhao H, Ge W. A theoretical bubble breakup model for slurry beds or three-phase fluidized beds under high pressure[J]. Chemical Engineering Science, 2007, 62(1/2): 109-115.
7 Liao Y X, Rzehak R, Lucas D, et al. Baseline closure model for dispersed bubbly flow: bubble coalescence and breakup[J]. Chemical Engineering Science, 2015, 122: 336-349.
8 Zhang X B, Yan W C, Luo Z H. Numerical simulation of local bubble size distribution in bubble columns operated at heterogeneous regime[J]. Chemical Engineering Science, 2021, 231: 116266.
9 Risso F, Roig V, Amoura Z, et al. Wake attenuation in large Reynolds number dispersed two-phase flows[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2008, 366(1873): 2177-2190.
10 Mercado J M, Gómez D C, van Gils D, et al. On bubble clustering and energy spectra in pseudo-turbulence[J]. Journal of Fluid Mechanics, 2010, 650: 287-306.
11 Riboux G, Risso F, Legendre D. Experimental characterization of the agitation generated by bubbles rising at high Reynolds number[J]. Journal of Fluid Mechanics, 2010, 643: 509-539.
12 Mendez-Diaz S, Serrano-García J C, Zenit R, et al. Power spectral distributions of pseudo-turbulent bubbly flows[J]. Physics of Fluids, 2013, 25(4): 043303.
13 Prakash V N, Martínez Mercado J, van Wijngaarden L, et al. Energy spectra in turbulent bubbly flows[J]. Journal of Fluid Mechanics, 2016, 791: 174-190.
14 Lance M, Bataille J. Turbulence in the liquid phase of a uniform bubbly air-water flow[J]. Journal of Fluid Mechanics, 1991, 222: 95.
15 Roghair I, Mercado J M, van Sint Annaland M, et al. Energy spectra and bubble velocity distributions in pseudo-turbulence: numerical simulations vs. experiments[J]. International Journal of Multiphase Flow, 2011, 37(9): 1093-1098.
16 Riboux G, Legendre D, Risso F. A model of bubble-induced turbulence based on large-scale wake interactions[J]. Journal of Fluid Mechanics, 2013, 719: 362-387.
17 Sommerfeld M, Muniz M, Reichardt T. On the importance of modelling bubble dynamics for point-mass numerical calculations of bubble columns[J]. Journal of Chemical Engineering of Japan, 2018, 51(4): 301-317.
18 Laviéville J, Mérigoux N, Guingo M, et al. A generalized turbulent dispersion model for bubbly flow numerical simulation in NEPTUNE_CFD[J]. Nuclear Engineering and Design, 2017, 312: 284-293.
19 de Bertodano M A L. Two fluid model for two-phase turbulent jets[J]. Nuclear Engineering and Design, 1998, 179(1): 65-74.
20 Drew D. A turbulent dispersion model for particles or bubbles[J]. Journal of Engineering Mathematics, 2001, 41: 259-274.
21 Lucas D, Krepper E, Prasser H M. Prediction of radial gas profiles in vertical pipe flow on the basis of bubble size distribution[J]. International Journal of Thermal Sciences, 2001, 40(3): 217-225.
22 Wang T F, Wang J F. Numerical simulations of gas-liquid mass transfer in bubble columns with a CFD-PBM coupled model[J]. Chemical Engineering Science, 2007, 62(24): 7107-7118.
23 Krishna R, van Baten J M. Mass transfer in bubble columns[J]. Catalysis Today, 2003, 79/80: 67-75.
24 Lamont J C, Scott D S. An eddy cell model of mass transfer into the surface of a turbulent liquid[J]. AIChE Journal, 1970, 16(4): 513-519.
25 Han L C, Luo H A, Liu Y J, et al. A multi-scale theoretical model for gas-liquid interface mass transfer based on the wide spectrum eddy contact concept[J]. AIChE Journal, 2011, 57(4): 886-896.
26 Parekh J, Rzehak R. Euler-Euler multiphase CFD-simulation with full Reynolds stress model and anisotropic bubble-induced turbulence[J]. International Journal of Multiphase Flow, 2018, 99: 231-245.
27 de Bertodano M L, Lee S J, Lahey R T, et al. The prediction of two-phase turbulence and phase distribution phenomena using a Reynolds stress model[J]. Journal of Fluids Engineering, 1990, 112(1): 107-113.
28 Shi W B, Yang X G, Sommerfeld M, et al. Modelling of mass transfer for gas-liquid two-phase flow in bubble column reactor with a bubble breakage model considering bubble-induced turbulence[J]. Chemical Engineering Journal, 2019, 371: 470-485.
29 Shi W B, Yang X G, Sommerfeld M, et al. A modified bubble breakage and coalescence model accounting the effect of bubble-induced turbulence for CFD-PBM modelling of bubble column bubbly flows[J]. Flow, Turbulence and Combustion, 2020, 105(4): 1197-1229.
30 Rzehak R, Krepper E. CFD modeling of bubble-induced turbulence[J]. International Journal of Multiphase Flow, 2013, 55: 138-155.
31 Rzehak R, Krepper E. Closure models for turbulent bubbly flows: a CFD study[J]. Nuclear Engineering and Design, 2013, 265: 701-711.
32 Long S S, Yang J, Huang X B, et al. Large-eddy simulation of gas-liquid two-phase flow in a bubble column reactor using a modified sub-grid scale model with the consideration of bubble-eddy interaction[J]. International Journal of Heat and Mass Transfer, 2020, 161: 120240.
33 Clift R, Grace J R, Weber M E. Bubbles, Drops, and Particles [M]. New York: Academic Press, 1978.
34 Tomiyama A. Struggle with computational bubble dynamics [J]. New York: Multiphase Science and Technology, 1998, 10(4): 369-405.
35 Luo H. Coalescence, breakup and liuqid circulation in bubble column reactors [D]. Trondheim, Norway: Norwegian Institute of Technology, 1993.
36 Gemello L, Plais C, Augier F, et al. Hydrodynamics and bubble size in bubble columns: effects of contaminants and spargers[J]. Chemical Engineering Science, 2018, 184: 93-102.
37 Gemello L, Plais C, Augier F, et al. Population balance modelling of bubble columns under the heterogeneous flow regime[J]. Chemical Engineering Journal, 2019, 372: 590-604.
38 Guan X P, Yang N. Bubble properties measurement in bubble columns: from homogeneous to heterogeneous regime[J]. Chemical Engineering Research and Design, 2017, 127: 103-112.
39 Burns A D, Frank T, Hamill I, et al. The favre averaged drag model for turbulent dispersion in Eulerian multi-phase flows[C]// 5th International Conference on Multiphase Flow, ICMF' 04. Yokohama, Japan: ICMF, 2004.
40 Chen P, Duduković M P, Sanyal J. Three-dimensional simulation of bubble column flows with bubble coalescence and breakup[J]. AIChE Journal, 2005, 51(3): 696-712.
41 Chen P, Sanyal J, Duduković M P. Numerical simulation of bubble columns flows: effect of different breakup and coalescence closures[J]. Chemical Engineering Science, 2005, 60(4): 1085-1101.
42 Zhang X B, Yan W C, Luo Z H. CFD-PBM simulation of bubble columns: sensitivity analysis of the nondrag forces[J]. Industrial & Engineering Chemistry Research, 2020, 59(41): 18674-18682.
43 Shi W B, Li G, Yang J, et al. CFD-PBM modelling of gas-liquid two-phase flow in bubble column reactors with an improved breakup kernel accounting for bubble shape variations[C]// Proceedings of the 13th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics (HEFAT2017). Portoroz, Slovenia: HEFAT, 2017.
44 Shi W B, Yang J, Li G, et al. Computational fluid dynamics-population balance modeling of gas-liquid two-phase flow in bubble column reactors with an improved breakup kernel accounting for bubble shape variations[J]. Heat Transfer Engineering, 2020, 41(15/16): 1414-1430.
45 Pope S B. Turbulent Flows [M]. Cambridge: Cambridge University Press, 2000.
46 Terasaka K, Hullmann D, Schumpe A. Mass transfer in bubble columns studied with an oxygen optode[J]. Chemical Engineering Science, 1998, 53(17): 3181-3184.
47 Zhang H H, Guo K Y, Wang Y L, et al. Numerical simulations of the effect of liquid viscosity on gas-liquid mass transfer of a bubble column with a CFD-PBM coupled model[J]. International Journal of Heat and Mass Transfer, 2020, 161: 120229.
[1] 解文潇, 贾胜坤, 张会书, 罗祎青, 袁希钢. 受限空间内浮升气泡与液体间传质行为实验研究[J]. 化工学报, 2022, 73(7): 2902-2911.
[2] 李亚飞, 邓建强, 何阳. 跨临界CO2快速膨胀过程中非平衡冷凝和闪蒸机理的数值研究[J]. 化工学报, 2022, 73(7): 2912-2923.
[3] 闫美月, 邓坚, 潘良明, 马在勇, 李想, 邓杰文, 何清澈. 基于流量振荡的窄矩形通道内临界热通量机理模型[J]. 化工学报, 2022, 73(7): 2962-2970.
[4] 魏琳, 郭剑, 廖梓豪, Dafalla Ahmed Mohmed, 蒋方明. 空气流量对空冷燃料电池电堆性能的影响研究[J]. 化工学报, 2022, 73(7): 3222-3231.
[5] 王利民, 郭舒宇, 向星, 付少童. 湍流系统的能量最小多尺度模型研究进展[J]. 化工学报, 2022, 73(6): 2415-2426.
[6] 曹健, 叶南南, 蒋管聪, 覃瑶, 王士博, 朱家华, 陆小华. 基于微量热法对多孔碳与双氧水相互作用过程的传质阻力分析[J]. 化工学报, 2022, 73(6): 2543-2551.
[7] 张文龙,宁尚雷,靳海波,马磊,何广湘,杨索和,郭晓燕,张荣月. 鼓泡塔内空气-醋酸体系流体力学参数的CFD-PBM耦合模型数值模拟[J]. 化工学报, 2022, 73(6): 2589-2602.
[8] 牛犁, 刘梦溪, 王海北. 密相流化床中介尺度流动结构的流体力学特性研究[J]. 化工学报, 2022, 73(6): 2622-2635.
[9] 许非石, 杨丽霞, 陈光文. 超声微反应器内气液传质过程的介尺度强化机制[J]. 化工学报, 2022, 73(6): 2552-2562.
[10] 李岩, 田阿慧, 周毅. 反应性双射流中标量输运和化学反应特性[J]. 化工学报, 2022, 73(5): 1947-1963.
[11] 殷亚然, 朱星星, 张先明, 朱春英, 付涛涛, 马友光. 微通道内醇胺/离子液体复配水溶液吸收CO2的传质特性[J]. 化工学报, 2022, 73(5): 1930-1939.
[12] 陈宏霞, 李林涵, 高翔, 王逸然, 郭宇翔. 基于气泡动力学分段调控浸润性强化核态沸腾[J]. 化工学报, 2022, 73(4): 1557-1565.
[13] 常楚鑫, 徐黎婷, 殷嘉伦, 雒先, 贾洪伟. 浸没状态下的低压电润湿行为研究[J]. 化工学报, 2022, 73(4): 1673-1682.
[14] 刘宏斐, 李雪良, 钱钧弢, 刘金, 堵国成, 陈坚. 摇床T25细胞培养瓶流体力学与传质特性研究[J]. 化工学报, 2022, 73(4): 1546-1556.
[15] 孙雄康, 李强. 多级复合芯结构的强化沸腾传热研究[J]. 化工学报, 2022, 73(3): 1127-1135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!