化工学报 ›› 2020, Vol. 71 ›› Issue (12): 5774-5784.DOI: 10.11949/0438-1157.20200691
田叶顺(),任文,王国袖,孙爽,周萍,王文龙,宋占龙,赵希强()
收稿日期:
2020-06-02
修回日期:
2020-07-18
出版日期:
2020-12-05
发布日期:
2020-12-05
通讯作者:
赵希强
作者简介:
田叶顺(1991—),男,博士研究生,基金资助:
TIAN Yeshun(),REN Wen,WANG Guoxiu,SUN Shuang,ZHOU Ping,WANG Wenlong,SONG Zhanlong,ZHAO Xiqiang()
Received:
2020-06-02
Revised:
2020-07-18
Online:
2020-12-05
Published:
2020-12-05
Contact:
ZHAO Xiqiang
摘要:
以富含含氮官能团的大豆秸秆为原料前体,结合微波加热的特殊优势,将微波加热技术应用于大豆秸秆热解和活化工艺。以热解固体产物为活化原料,以CO2为活化剂进行活性炭制备研究,以期制备出高脱硫性能的生物质活性炭。首先通过正交实验设计及极差分析得出最优活化水平,再通过单因素实验法考察微波功率、CO2流量和活化时间对活性炭产率、孔隙结构以及脱硫性能的影响。对比分析选出最佳活化条件为微波功率900 W,CO2流量0.10 L/min,活化时间20 min。在此条件下活性炭产率为76.3%(质量),SO2饱和吸附容量为112.56 mg/g,比表面积为466.28 m2/g。相比热解炭,活性炭的比表面积更大,孔隙更加丰富,脱硫性能显著提高。
中图分类号:
田叶顺,任文,王国袖,孙爽,周萍,王文龙,宋占龙,赵希强. 微波加热CO2活化法制备生物质活性炭及其脱硫性能研究[J]. 化工学报, 2020, 71(12): 5774-5784.
TIAN Yeshun,REN Wen,WANG Guoxiu,SUN Shuang,ZHOU Ping,WANG Wenlong,SONG Zhanlong,ZHAO Xiqiang. Study on preparation and desulfurization characteristics of biomass activated carbon by microwave heating CO2 activation method[J]. CIESC Journal, 2020, 71(12): 5774-5784.
工业分析/%(mass) | 元素分析/%(mass) | ||||||
---|---|---|---|---|---|---|---|
Mad | Aad | Vad | FCad | C | H | O | N |
12.1 | 2.9 | 68.7 | 16.2 | 44.3 | 6.2 | 43.8 | 2.5 |
表1 大豆秸秆的工业分析和元素分析
Table 1 Industrial and elemental analysis of soybean straw
工业分析/%(mass) | 元素分析/%(mass) | ||||||
---|---|---|---|---|---|---|---|
Mad | Aad | Vad | FCad | C | H | O | N |
12.1 | 2.9 | 68.7 | 16.2 | 44.3 | 6.2 | 43.8 | 2.5 |
比表面积/ (m2/g) | 微孔比表面积/ (m2/g) | 平均孔径/nm | SO2饱和吸附量/ (mg/g) |
---|---|---|---|
110.14 | 57.36 | 3.51 | 34.10 |
表2 热解炭特性
Table 2 Characteristics of pyrolytic carbon
比表面积/ (m2/g) | 微孔比表面积/ (m2/g) | 平均孔径/nm | SO2饱和吸附量/ (mg/g) |
---|---|---|---|
110.14 | 57.36 | 3.51 | 34.10 |
水平 | 因素 | ||
---|---|---|---|
A:微波功率/W | B:活化时间/min | C:CO2流量/(L/min) | |
1 | 300 | 20 | 0.10 |
2 | 500 | 30 | 0.15 |
3 | 700 | 40 | 0.20 |
表3 活化正交实验因素与水平设计
Table 3 Activation orthogonal experimental factors and horizontal design
水平 | 因素 | ||
---|---|---|---|
A:微波功率/W | B:活化时间/min | C:CO2流量/(L/min) | |
1 | 300 | 20 | 0.10 |
2 | 500 | 30 | 0.15 |
3 | 700 | 40 | 0.20 |
序号 | 因素 | 目标函数: SO2饱和吸附量/(mg/g) | ||
---|---|---|---|---|
A: 微波功率/W | B: 活化时间/min | C: CO2流量/ (L/min) | ||
1 | 300 | 20 | 0.10 | 50.21 |
2 | 300 | 30 | 0.15 | 57.83 |
3 | 300 | 40 | 0.20 | 79.69 |
4 | 500 | 20 | 0.15 | 87.70 |
5 | 500 | 30 | 0.20 | 75.40 |
6 | 500 | 40 | 0.10 | 83 |
7 | 700 | 20 | 0.20 | 68.66 |
8 | 700 | 30 | 0.10 | 41.93 |
9 | 700 | 40 | 0.15 | 51.58 |
K1 | 184.73 | 206.57 | 175.14 | Σ=596.0 |
K2 | 162.17 | 175.16 | 197.11 | |
K3 | 246.1 | 214.27 | 223.75 | |
61.58 | 68.86 | 58.38 | ||
54.06 | 58.39 | 65.70 | ||
82.03 | 71.42 | 74.58 | ||
优水平 | A3 | B3 | C3 | |
Rj | 27.97 | 13.03 | 16.2 | |
因素主次 | A、C、B |
表4 正交实验结果
Table 4 The orthogonal experimental results
序号 | 因素 | 目标函数: SO2饱和吸附量/(mg/g) | ||
---|---|---|---|---|
A: 微波功率/W | B: 活化时间/min | C: CO2流量/ (L/min) | ||
1 | 300 | 20 | 0.10 | 50.21 |
2 | 300 | 30 | 0.15 | 57.83 |
3 | 300 | 40 | 0.20 | 79.69 |
4 | 500 | 20 | 0.15 | 87.70 |
5 | 500 | 30 | 0.20 | 75.40 |
6 | 500 | 40 | 0.10 | 83 |
7 | 700 | 20 | 0.20 | 68.66 |
8 | 700 | 30 | 0.10 | 41.93 |
9 | 700 | 40 | 0.15 | 51.58 |
K1 | 184.73 | 206.57 | 175.14 | Σ=596.0 |
K2 | 162.17 | 175.16 | 197.11 | |
K3 | 246.1 | 214.27 | 223.75 | |
61.58 | 68.86 | 58.38 | ||
54.06 | 58.39 | 65.70 | ||
82.03 | 71.42 | 74.58 | ||
优水平 | A3 | B3 | C3 | |
Rj | 27.97 | 13.03 | 16.2 | |
因素主次 | A、C、B |
微波功率/W | 比表面积/(m2/g) | 微孔比表面积/ (m2/g) | 平均孔径/nm |
---|---|---|---|
100 | 114.54 | 101.03 | 3.13 |
300 | 205.06 | 160.45 | 2.58 |
500 | 247.26 | 177.60 | 2.49 |
700 | 291.99 | 191.69 | 2.43 |
900 | 355.29 | 251.43 | 2.22 |
表5 不同微波功率下活性炭的孔隙结构
Table 5 Pore structure of activated carbon under different microwave powers
微波功率/W | 比表面积/(m2/g) | 微孔比表面积/ (m2/g) | 平均孔径/nm |
---|---|---|---|
100 | 114.54 | 101.03 | 3.13 |
300 | 205.06 | 160.45 | 2.58 |
500 | 247.26 | 177.60 | 2.49 |
700 | 291.99 | 191.69 | 2.43 |
900 | 355.29 | 251.43 | 2.22 |
CO2流量/(L/min) | 比表面积/(m2/g) | 微孔比表面积/ (m2/g) | 平均孔径/nm |
---|---|---|---|
0.05 | 308.48 | 208.41 | 2.24 |
0.10 | 428.51 | 306.34 | 2.03 |
0.15 | 326.68 | 211.26 | 2.23 |
0.20 | 291.99 | 191.69 | 2.43 |
0.25 | 229.13 | 155.32 | 2.48 |
表6 不同CO2流量下活性炭的孔隙结构
Table 6 Pore structure of activated carbon under different CO2 flow rates
CO2流量/(L/min) | 比表面积/(m2/g) | 微孔比表面积/ (m2/g) | 平均孔径/nm |
---|---|---|---|
0.05 | 308.48 | 208.41 | 2.24 |
0.10 | 428.51 | 306.34 | 2.03 |
0.15 | 326.68 | 211.26 | 2.23 |
0.20 | 291.99 | 191.69 | 2.43 |
0.25 | 229.13 | 155.32 | 2.48 |
活化时间/min | 比表面积/(m2/g) | 微孔比表面积/ (m2/g) | 平均孔径/nm |
---|---|---|---|
10 | 406.11 | 312.93 | 2.15 |
20 | 431.53 | 330.16 | 1.91 |
30 | 427.17 | 338.94 | 2.04 |
40 | 291.99 | 191.69 | 2.43 |
50 | 239.09 | 164.40 | 2.47 |
表7 不同活化时间下活性炭的孔隙结构
Table 7 Pore structure of activated carbon under different activation time
活化时间/min | 比表面积/(m2/g) | 微孔比表面积/ (m2/g) | 平均孔径/nm |
---|---|---|---|
10 | 406.11 | 312.93 | 2.15 |
20 | 431.53 | 330.16 | 1.91 |
30 | 427.17 | 338.94 | 2.04 |
40 | 291.99 | 191.69 | 2.43 |
50 | 239.09 | 164.40 | 2.47 |
1 | 赵雪, 程茜, 侯俊先.脱硫脱硝行业2017年发展综述[J].中国环保产业, 2018, (7): 10-24. |
Zhao X, Cheng Q, Hou J X. Development report on desulfurization and denitration industry in 2017 [J]. China Environmental Protection Industry, 2018, (7):10-24. | |
2 | Ben B Z, Yun Q L, Yue Y Y. Progress in preparation of activated carbon and its activation mechanism [J]. Modern Chemical Industry, 2014, 34(3): 34-39. |
3 | Ioannidou O, Zabaniotou A. Agricultural residues as precursors for activated carbon production—a review[J]. Renewable & Sustainable Energy Reviews, 2007, 11(9): 1966-2005. |
4 | 李艳鹰. 生物质活性炭负载零价铁纳米晶簇直接催化还原NO [J]. 化工学报, 2019, 70(3): 1111-1119. |
Li Y Y. Biomass activated carbon loaded with zero-valent iron nanocrystal clusters for direct catalytic reduction of NO [J]. CIESC Journal, 2019, 70(3): 1111-1119. | |
5 | 郭晓娜. 氮掺杂活性炭材料的制备及性能研究 [D]. 贵阳: 贵州大学, 2016. |
Guo X N. Preparation and properties of nitrogen-doped activated carbon materials [D]. Guiyang: Guizhou University, 2016. | |
6 | 王维竹, 刘勇军, 范武波, 等. 活性炭纤维改性表面官能团脱硫作用[J].化工新型材料, 2014, 42(4): 182-184. |
Wang W Z, Liu Y J, Fan W B, et al. Desulfurization of surface functional groups for modification of activated carbon fiber [J]. New Chemical Materials, 2014, 42(4): 182-184. | |
7 | 杨丽娟. 生物质活性炭的制备及应用发展研究 [J]. 黑龙江科学, 2018, 9(18): 44-45. |
Yang L J. Study on preparation and application development of biomass activated carbon [J]. Heilongjiang Science, 2018, 9(18): 44-45. | |
8 | Zhang K, Cheung W, Valix M. Roles of physical and chemical properties of activated carbon in the adsorption of lead ions[J]. Chemosphere, 2005, 60(8): 1129-1140. |
9 | 莫柳珍, 廖炳权, 黄向阳, 等. 甘蔗渣活性炭制备研究进展[J]. 广西糖业, 2015, (1): 31-35. |
Mo L Z, Liao B Q, Huang X Y, et al. Research progress in preparation of activated carbon from bagasse [J]. Guangxi Sugarcane & Canesugar, 2015, (1): 31-35. | |
10 | Arenas E, Chejne F. The effect of the activating agent and temperature on the porosity development of physically activated coal chars [J]. Carbon, 2004, 42(12): 2451-2455. |
11 | Guo J, Lua A C. Characterization of adsorbent prepared from oil-palm shell by CO2 activation for removal of gaseous pollutants [J]. Materials Letters, 2002, 55(5): 334-339. |
12 | Yang K S, Yoon Y J, Lee M S, et al. Further carbonization of anisotropic and isotropic pitch-based carbons by microwave irradiation [J]. Carbon, 2002, 40(6): 897-903. |
13 | 王超前, 王文龙, 李哲, 等. 基于微波诱导定向加热的污泥新型热解方法能耗分析 [J]. 化工学报, 2019, 70: 168-176. |
Wang C Q Wang W L, Li Z, et al. Energy consumption analysis of novel pyrolysis method of sewage sludge based on microwave-induced target-oriented heating [J]. CIESC Journal, 2019, 70: 168-176. | |
14 | 樊希安, 彭金辉, 秦文峰, 等. 微波辐射处理竹节废料制备活性炭研究 [J]. 林产化学与工业, 2003, (3): 56-60. |
Fan X A, Peng J H, Qin W F, et al. Research on preparation of activated carbon from bamboo knot by microwave radiation [J]. Chemistry and Industry of Forest Products, 2003, (3): 56-60. | |
15 | Georgin J, Dotto G L, Mazutti M A, et al. Preparation of activated carbon from peanut shell by conventional pyrolysis and microwave irradiation-pyrolysis to remove organic dyes from aqueous solutions [J]. Journal of Environmental Chemical Engineering, 2016, 4(1): 266-275. |
16 | 潘能婷, 苏展军, 莫家乐, 等. 新型微波适应型复合活性炭的研制及其微波再生性能 [J]. 化工学报, 2011, 62(1): 111-118. |
Pan N T, Su Z J, Mo J L, et al. Preparation of novel composite activated carbon with high applicability to microwave and its regeneration under microwave radiation [J]. CIESC Journal, 2011, 62(1): 111-118. | |
17 | Ravikovitch P I, Neimark A V. Density functional theory model of adsorption on amorphous and microporous silica materials [J]. Langmuir the ACS Journal of Surfaces & Colloids, 2006, 22(26): 11171-11179. |
18 | 张振. 粉状活性半焦的快速制备过程及SO2吸附特性研究 [D]. 济南: 山东大学, 2016. |
Zhang Z. Study on fast preparation of powdered active semi-coke and characteristics of SO2 adsorption [D]. Jinan: Shandong University, 2016. | |
19 | Tsuji K, Shiraishi I. Combined desulfurization, denitrification and reduction of air toxics using activated coke(1): Activity of activated coke [J]. Fuel, 1997, 76(6): 549-553. |
20 | 李兰廷.活性焦脱硫脱硝的机理研究——烟气组成的影响[J].煤炭学报, 2010, 35(S1): 185-189. |
Li L T. Mechanism of removal of SO2 and NO on activated coke: effect of component of flue gas on activated coke [J]. Journal of China Coal Society, 2010, 35(S1): 185-189. | |
21 | 张守玉, 朱廷玉, 杨之媛, 等. 煤制活性焦用于脱除烟道气中的SO2 [J]. 燃烧科学与技术, 2002, 8(1): 38-43. |
Zhang S Y, Zhu T Y, Yang Z Y, et al. Application of active coke derived from coal for SO2-removal from flue gas [J]. Journal of Combustion Science and Technology, 2002, 8(1): 38-43. | |
22 | 刘珂. 煤粉快速热解制备粉状活性焦及副产热解气的实验研究[D]. 济南: 山东大学, 2017. |
Liu K. Experimental study on preparation of powder activated coke and by-product pyrolysis gas by rapid pyrolysis of pulverized coal [D]. Jinan: Shandong University, 2017. | |
23 | Chen G, Andries J, Luo Z, et al. Biomass pyrolysis/gasification for product gas production: the overall investigation of parametric effects [J]. Energy Conversion & Management, 2003, 44(11): 1875-1884. |
24 | Onay O, Kockar O M. Slow, fast and flash pyrolysis of rapeseed [J]. Renewable Energy, 2003, 28(15): 2417-2433. |
25 | Rong Y, Yang H, Chin T, et al. Influence of temperature on the distribution of gaseous products from pyrolyzing palm oil wastes [J]. Combustion & Flame, 2005, 142(1): 24-32. |
26 | 郝博. 核桃壳废弃物流态化物理活化法制备活性炭的研究 [D]. 天津: 天津科技大学, 2014. |
Hao B. Preparation of activated carbon from walnut shell wastes by physical activation in a fluidized bed reactor [D]. Tianjin: Tianjin University of Science and Technology, 2014. | |
27 | 杨坤彬. 物理活化法制备椰壳基活性炭及其孔结构演变 [D]. 昆明: 昆明理工大学, 2010. |
Yang K B. Preparation of coconut shell-based activated carbon by physical activation and its pore structure evolution [D]. Kunming: Kunming University of Science and Technology, 2010. | |
28 | 夏洪应, 彭金辉, 张利波, 等. 微波辐射二氧化碳法制备烟秆基颗粒活性炭[J].煤炭转化, 2006, (1): 81-84. |
Xia H Y, Peng J H, Zhang L B, et al. Preparation of granular activated carbon from tobacco stems by microwave irradiation-carbon dioxide [J]. Coal Conversion, 2006, (1): 81-84. | |
29 | Guo J, Lua A C. Preparation of activated carbons from oil-palm-stone chars by microwave-induced carbon dioxide activation [J]. Carbon, 2000, 38(14): 1985-1993. |
30 | 张晓鸿, 詹昊, 阴秀丽, 等. 富氮生物质原料热解过程中NOx前驱物释放特性研究 [J]. 燃料化学学报, 2016, 44(12): 1464-1472. |
Zhang X H, Zhan H, Yin X L, et al. Release characteristic of NOx precursors during the pyrolysis of nitrogen-rich biomass [J]. Journal of Fuel Chemistry and Technology, 2016, 44(12): 1464-1472. | |
31 | Ren Q, Zhao C, Chen X, et al. NOx and NO precursors (NH and HCN) from biomass pyrolysis: co-pyrolysis of amino acids and cellulose, hemicellulose and lignin [J]. Proceedings of the Combustion Institute, 2011, 33(2): 1715-1722. |
32 | Hansson K M, Åmand L E, Habermann A, et al. Pyrolysis of poly-L-leucine under combustion-like conditions [J]. Fuel, 2003, 82(6): 653-660. |
33 | 唐晓帆. 基于石墨烯探究官能团对SO2吸附过程的影响 [D]. 哈尔滨: 哈尔滨工业大学, 2015. |
Tang X F. Exploring the effects of functional groups on graphene materials on the adsorptional process of SO2 [D]. Harbin: Harbin Institute of Technology, 2015. | |
34 | 张香兰, 徐德平. 活性半焦的制备: 性能与烟气脱硫机理 [M]. 北京: 化学工业出版社, 2012: 36. |
Zhang X L, Xu D P. Preparation of Activated Semi-Coke: Performance and Mechanism of Flue Gas Desulfurization [M]. Beijing: Chemical Industry Press, 2012: 36. | |
35 | 李开喜, 凌立成, 刘郎, 等. SO2在含氮沥青基活性炭纤维上的脱除 (Ⅰ): 含氮沥青基活性炭纤维的脱硫能力研究 [J]. 新型炭材料, 1998, 13(2): 37-42. |
Li K X, Ling L C, Liu L, et al. Removal of SO2 over nitrogen-containing pitch based activated carbon fiber (Ⅰ): Studies on desulfurization abilities of nitrogen-containing activated carbon fiber [J]. New Carbon Materials 1998, 13(2): 37-42. | |
36 | Xu L, Guo J, Jin F, et al. Removal of SO2 from O2-containing flue gas by activated carbon fiber (ACF) impregnated with NH3 [J]. Chemosphere, 2006, 62(5): 823-826. |
[1] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[2] | 吕龙义, 及文博, 韩沐达, 李伟光, 高文芳, 刘晓阳, 孙丽, 王鹏飞, 任芝军, 张光明. 铁基导电材料强化厌氧去除卤代有机污染物:研究进展及未来展望[J]. 化工学报, 2023, 74(8): 3193-3202. |
[3] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[4] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[5] | 王光宇, 张锴, 张凯华, 张东柯. 微波加热干燥煤泥热质传递及其能耗特性分析[J]. 化工学报, 2023, 74(6): 2382-2390. |
[6] | 贾晓宇, 杨剑, 王博, 林梅, 王秋旺. 金属丝网毛细特性的孔隙尺度数值分析[J]. 化工学报, 2023, 74(5): 1928-1938. |
[7] | 陈宇豪, 陈晓平, 马吉亮, 梁财. 市政污泥回转窑焚烧气态污染物排放特性研究[J]. 化工学报, 2023, 74(5): 2170-2178. |
[8] | 胡香凝, 尹渊博, 袁辰, 是赟, 刘翠伟, 胡其会, 杨文, 李玉星. 成品油在土壤中运移可视化的实验研究[J]. 化工学报, 2023, 74(4): 1827-1835. |
[9] | 王晓萱, 胡晓红, 陆雨楠, 王士勇, 凡凤仙. 旋转膜过滤器内部流动特性数值模拟[J]. 化工学报, 2023, 74(4): 1489-1498. |
[10] | 张银宁, 王进卿, 冯致, 詹明秀, 徐旭, 张光学, 池作和. 升温条件下多孔介质内气泡的生长和聚并行为[J]. 化工学报, 2023, 74(4): 1509-1518. |
[11] | 杨辉著, 兰精灵, 杨月, 梁嘉林, 吕传文, 朱永刚. 高功率平板热管传热性能的实验研究[J]. 化工学报, 2023, 74(4): 1561-1569. |
[12] | 白天昊, 王晓雯, 杨梦滋, 段新伟, 米杰, 武蒙蒙. 类水滑石衍生锌基氧化物高温煤气脱硫过程中COS释放行为及其抑制研究[J]. 化工学报, 2023, 74(4): 1772-1780. |
[13] | 钱志广, 樊越, 王世学, 岳利可, 王金山, 朱禹. 吹扫条件对PEMFC阻抗弛豫现象和低温启动的影响[J]. 化工学报, 2023, 74(3): 1286-1293. |
[14] | 陈俊先, 姬忠礼, 赵瑜, 张倩, 周岩, 刘猛, 刘震. 基于微波技术的天然气管道内颗粒物在线检测方法研究[J]. 化工学报, 2023, 74(3): 1042-1053. |
[15] | 王沛, 魏荣阔. 光热驱动多孔氧化铈热化学循环解水制氢非热质平衡模型[J]. 化工学报, 2022, 73(7): 2885-2894. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||