1 |
Stevens J C, Neithamer D R. Metal complex compounds:US5064802A[P]. 1990-07-03.
|
2 |
Chum P S, Swogger K W. Olefin polymer technologies-history and recent progress at the Dow Chemical Company[J]. Progress in Polymer Science, 2008, 33(8): 797-819.
|
3 |
李伯耿, 张明轩, 刘伟峰, 等. 聚烯烃类弹性体—现状与进展[J]. 化工进展, 2017, 36(9): 3135-3144.
|
|
Li B G, Zhang M X, Liu W F, et al. Polyolefin elastomers - status and progress[J]. Chemical Industry and Engineering Progress, 2017, 36(9): 3135-3144.
|
4 |
Braunschweig H, Breitling F M. Constrained geometry complexes—synthesis and applications[J]. Coordination Chemistry Reviews, 2006, 250(21/22): 2691-2720.
|
5 |
李良杰. 聚烯烃弹性体及其催化体系研究进展[J]. 弹性体, 2015, 5: 88-94.
|
|
Li L J. Research progress of polyolefin elastomers and their catalytic systems[J]. Elastomers, 2015, 5: 88-94.
|
6 |
Tian S, Arredondo V M, Stern C L, et al. Constrained geometry organolanthanide catalysts. synthesis, structural characterization, and enhanced aminoalkene hydroamination/cyclization activity[J]. Organometallics, 1999, 18(14): 2568-2570.
|
7 |
Resconi L, Camurati I, Grandini C, et al. Indenyl-amido titanium and zirconium dimethyl complexes: improved synthesis and use in propylene polymerization[J]. Journal of Organometallic Chemistry, 2002, 664(1/2): 5-26.
|
8 |
Sakai S, Kojima Y. Theoretical studies on the role of bridging group of CGC type ligands for the Ziegler-Natta catalysis[J]. Journal of Organometallic Chemistry, 2009, 694(20): 3276-3280.
|
9 |
Young M J, Ma C-C M. Polymerization kinetics and modeling of solution PE process with metallocene catalysts[J]. Journal of Polymer Engineering, 2002, 22(2): 75-94.
|
10 |
Wang W J, Yan D, Zhu S P, et al. Kinetics of long chain branching in continuous solution polymerization of ethylene using constrained geometry metallocene[J]. Macromolecules, 1998, 31(25): 8677-8683.
|
11 |
Mehdiabadi S, Soares J B P. Ethylene homopolymerization kinetics with a constrained geometry catalyst in a solution reactor[J]. Macromolecules, 2012, 45(4): 1777-1791.
|
12 |
Liu W F, Wang W J, Fan, H, et al. Structure analysis of ethylene/1-octene copolymers synthesized from living coordination polymerization[J]. European Polymer Journal, 2014, 54: 160-171.
|
13 |
Liu W F, Zhang K, Fan H, et al. Living copolymerization of ethylene/1‐octene with fluorinated FI-Ti catalyst[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2013, 51(2): 405-414.
|
14 |
Liu P W, Liu W F, Wang W J, et al. A comprehensive review on controlled synthesis of long‐chain branched polyolefins: Part 1, single catalyst systems[J]. Macromolecular Reaction Engineering, 2016, 10(3): 156-179.
|
15 |
Liu W F, Liu P W, Wang W J, et al. A comprehensive review on controlled synthesis of long-chain branched polyolefins: Part 2, multiple catalyst systems and prepolymer modification[J]. Macromolecular Reaction Engineering, 2016, 10(3): 180-200.
|
16 |
Liu P W, Liu W F, Wang W J, et al. A comprehensive review on controlled synthesis of long‐chain branched polyolefins: Part 3, characterization of long‐chain branched polymers[J]. Macromolecular Reaction Engineering, 2017, 11(1): 1600012.
|
17 |
Ray W H. On the mathematical modeling of polymerization reactors[J]. Journal of Macromolecular Science—Reviews in Macromolecular Chemistry, 1972, 8(1): 1-56.
|
18 |
Ye Y, Schork F J. Modeling of sequence length and distribution for the NM-CRP of styrene and 4-methylstyrene in batch and semi-batch reactors[J]. Macromolecular Reaction Engineering, 2010, 4(3/4): 197-209.
|
19 |
Zargar A, Schork F J. Copolymer sequence distributions in controlled radical polymerization[J]. Macromolecular Reaction Engineering, 2009, 3(2/3): 118-130.
|
20 |
Zargar A, Schork F J. Design of copolymer molecular architecture via design of continuous reactor systems for controlled radical polymerization[J]. Industrial & Engineering Chemistry Research, 2009, 48(9): 4245-4253.
|
21 |
邱云霞. 面向序列结构的乙烯—丙烯共聚过程建模[D]. 杭州: 浙江大学, 2014.
|
|
Qiu Y X. Modeling of ethylene-propylene copolymerization process oriented to sequence structure [D]. Hangzhou: Zhejiang University, 2014.
|
22 |
王金强, 田洲, 程瑞华等. CGC/i-Bu3Al/Ph3C+B(C6F5)4-催化乙烯均聚及乙烯与 1-辛烯共聚行为[J]. 合成树脂及塑料, 2018, 35(6): 15-21.
|
|
Wang J Q, Tian Z, Cheng R H, et al. CGC/i-Bu3Al/Ph3C+B(C6F5)4- catalyzed ethylene homopolymerization and copolymerization of ethylene and 1-octene[J]. Synthetic Resins & Plastics, 2018, 35(6 ): 15-21.
|
23 |
Soares J B, Mckenna T F. Polyolefin reaction engineering[M]. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2012: 145-148.
|
24 |
Ostrovskii N, Stoiljković D. Evaluation of the effect of reaction and mass transfer on the growth of polymer particles in olefin polymerization[J]. Theoretical Foundations of Chemical Engineering, 2011, 45(1): 40-52.
|
25 |
Soga K, Yanagihara H, Lee D H. Effect of monomer diffusion in the polymerization of olefins over Ziegler-Natta catalysts[J]. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, 1989, 190(5): 995-1006.
|
26 |
Anantawaraskul S, Soares J B P, Wood-Adams P M, et al. Effect of molecular weight and average comonomer content on the crystallization analysis fractionation (Crystaf) of ethylene alpha-olefin copolymers[J]. Polymer, 2003, 44(8): 2393-2401.
|
27 |
Matsuba G, Shimizu K, Wang H, et al. Kinetics of phase separation and crystallization in poly (ethylene-ran-hexene) and poly (ethylene-ran-octene)[J]. Polymer, 2003, 44(24): 7459-7465.
|
28 |
Sarzotti D M, Soares J B P, Simon L C, et al. Analysis of the chemical composition distribution of ethylene/alpha-olefin copolymers by solution differential scanning calorimetry: an alternative technique to Crystaf[J]. Polymer, 2004, 45(14): 4787-4799.
|
29 |
Arndt J H, Brull R, Macko T, et al. Characterization of the chemical composition distribution of polyolefin plastomers/elastomers (ethylene/1-octene copolymers) and comparison to theoretical predictions[J]. Polymer, 2018, 156: 214-221.
|
30 |
刘伟峰. 乙烯/辛烯溶液共聚及其聚合物链结构的调控[D]. 杭州: 浙江大学, 2014.
|
|
Liu W F. Ethylene/octene solution copolymerization and regulation of its polymer chain structure [D]. Hangzhou: Zhejiang University, 2014.
|