化工学报 ›› 2020, Vol. 71 ›› Issue (2): 799-810.DOI: 10.11949/0438-1157.20190657
杨慧芳(),关海莲,李平(),夏英,王凤,徐文静,白红存,郭庆杰
收稿日期:
2019-06-12
修回日期:
2019-09-09
出版日期:
2020-02-05
发布日期:
2020-02-05
通讯作者:
李平
作者简介:
杨慧芳(1993—),女,硕士研究生,基金资助:
Huifang YANG(),Hailian GUAN,Ping LI(),Ying XIA,Feng WANG,Wenjing XU,Hongcun BAI,Qingjie GUO
Received:
2019-06-12
Revised:
2019-09-09
Online:
2020-02-05
Published:
2020-02-05
Contact:
Ping LI
摘要:
煤燃烧是煤炭资源有效利用的重要方式之一。从原子分子水平上识别煤燃烧的机理,系统把握反应条件的影响,揭示含氮污染物迁移转化的路径对于煤炭高效清洁利用具有重要意义。以前期构建的宁东红石湾煤分子结构模型为基础,采用反应分子动力学模拟方法对煤大分子结构聚集态模型进行燃烧反应模拟,考察化学当量比和反应温度对燃烧过程中结构演变、燃烧反应物和产物的影响,探究有机氮转化路径。研究发现,随着反应不断进行,煤结构的断裂变化非常明显。不同化学当量比和不同温度下煤燃烧的结果表明,化学当量比越大、燃烧温度越高时,O2分子消耗速度越快,CO2的生成量也越多。对燃煤过程中含氮气体分子数量的分析表明,HCN是重要的含氮中间产物,NO、NO2是主要含氮气体产物。本研究还建立了煤燃烧过程中有机氮的转化路径,获得了HCN、NO和NO2的演变过程。
中图分类号:
杨慧芳, 关海莲, 李平, 夏英, 王凤, 徐文静, 白红存, 郭庆杰. 煤颗粒燃烧过程氧化机理及有机氮转化的分子模拟:以宁东红石湾煤为例[J]. 化工学报, 2020, 71(2): 799-810.
Huifang YANG, Hailian GUAN, Ping LI, Ying XIA, Feng WANG, Wenjing XU, Hongcun BAI, Qingjie GUO. Molecular modeling of oxidation mechanism and organic nitrogen conversion in coal particle combustion: a case study on HSW coal of Ningdong[J]. CIESC Journal, 2020, 71(2): 799-810.
1 | 叶茂, 朱文良, 徐庶亮, 等. 关于煤化工与石油化工的协调发展[J]. 中国科学院院刊, 2019, 34(4): 417-425. |
Ye M, Zhu W L, Xu S L, et al. Coordinated development of coal chemical and petrochemical industries in China[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 417-425. | |
2 | Tillman D A. Biomass cofiring: the technology, the experience, the combustion consequences[J]. Biomass and Bioenergy, 2000, 19(6): 365-384. |
3 | Wang C P, Wang F Y, Yang Q R. et al. Thermogravimetric studies of the behavior of wheat straw with added coal during combustion[J]. Biomass and Bioenergy, 2009, 33(1): 50-56. |
4 | Nandi B, Brown T D, Lee G K. Inert coal macerals in combustion[J]. Fuel, 1977, 56(2): 125-130. |
5 | 文虎, 黄遥, 张玉涛, 等. 氧气体积分数与升温速率对弱黏煤燃烧特性的影响[J]. 煤炭学报, 2017, 42(9): 2362-2368. |
Wen H, Huang Y, Zhang Y T, et al. Effects of oxygen concentration and heating rate on the characteristics of bituminous coal combustion[J]. Journal of China Coal Society, 2017, 42(9): 2362-2368. | |
6 | 周西华, 李昂, 聂荣山, 等. 不同变质程度煤燃烧阶段碳氧化物生成规律[J]. 中国安全科学学报, 2016, 26(4): 34-39. |
Zhou X H, Li A, Nie R S, et al. Carbon oxides formation law of different metamorphic degree coals at combustion phrase [J]. China Safety Science Journal, 2016, 26(4): 34-39. | |
7 | 王廷旭, 匡思维, 方庆艳, 等. O2/CO2气氛下煤/生物质混燃特性实验研究[J]. 热力发电, 2017, 46(4): 16-21+38. |
Wang T X, Kuang S W, Fang Q Y, et al. Experimental study on co-firing characteristics of coal/biomass blends in O2/CO2 atmosphere[J]. Thermal Power Generation, 2017, 46(4): 16-21+38. | |
8 | 鄢晓忠, 邱靖, 尹艳山, 等. 褐煤中官能团对其燃烧特性的影响[J]. 煤炭科学技术, 2016, 44(4): 169-174. |
Yan X Z, Qiu J, Yin Y S, et al. Effects of functional groups in lignite on its combustion characteristics[J]. Coal Science and Technology, 2016, 44(4): 169-174. | |
9 | Xie K C. Structure and Reactivity of Coal[M]. New York: Spring-Verlag Press, 2015: 1-27. |
10 | Wang Q D, Wang J B, Li J Q, et al. Reactive molecular dynamics simulation and chemical kinetic modeling of pyrolysis and combustion of n-dodecane[J]. Combustion and Flame, 2011, 158(2): 217-226. |
11 | Yan G H, Zhang Z Q, Yan K F. Reactive molecular dynamics simulations of the initial stage of brown coal oxidation at high temperatures[J]. Molecular Physics, 2013, 111(1): 147-156. |
12 | Li W, Zhu Y M, Wang G, et al. Molecular model and ReaxFF molecular dynamics simulation of coal vitrinite pyrolysis[J]. J. Mol. Model., 2015, 21: 188. |
13 | Castro-Marcano F, Russo Jr M F, Duin A C,et al. Pyrolysis of a large-scale molecular model for Illinois No. 6 coal using the ReaxFF reactive force field[ J]. Journal of Analytical and Applied Pyrolysis, 2014, 109: 79-89. |
14 | 洪迪昆. 准东煤热解及富氧燃烧的反应分子动力学研究[D].武汉: 华中科技大学, 2018. |
Hong D K. Study on the pyrolysis and oxy-fuel combustion of Zhundong coal using reactive molecular dynamics simulations[D]. Wuhan: Huazhong University of Science & Technology, 2018. | |
15 | Zheng M, Li X X, Liu J, et al. Initial chemical reaction simulation of coal pyrolysis via ReaxFF molecular dynamics[J]. Energy Fuels, 2013, 27: 2942-2951. |
16 | Zheng M, Li X X, Nie F G, et al. Investigation of model scale effects on coal pyrolysis using ReaxFF MD simulation[J]. Molecular Simulation, 2017, 43(13-16): 1081-1088. |
17 | Zheng M, Li X X, Guo L. Investigation of N behavior during coal pyrolysis and oxidation using ReaxFF molecular dynamics[J]. Fuel, 2018, 223: 867-876. |
18 | Castro-Marcano F, Kamat A M, Russo Jr M F,et al. Combustion of an Illinois No. 6 coal char simulated using an atomistic char representation and the ReaxFF reactive force field[J]. Combustion and Flame, 2012, 159(3): 1272-1285. |
19 | 林蔚. 煤热解焦化和加氢脱硫的ReaxFF反应分子动力学分析[D]. 北京: 北京科技大学, 2016. |
Lin W. Reaction mechanisms of coal pyrolysis and coal hydrodesulfurization by ReaxFF molecular dynamics[D]. Beijing: University of Science and Technology Beijing, 2016. | |
20 | 赵聪, 阎志中, 杨颂, 等. 煤热解过程中氮元素迁移规律影响因素[J]. 应用化工, 2018, 47(4): 830-833. |
Zhao C, Yan Z Z, Yang S, et al. Affecting the migration of nitrogen elements during coal pyrolysis[J]. Applied Chemical Industry, 2018, 47(4): 830-833. | |
21 | 李莹莹, 王杰平, 李光跃, 等. ReaxFF动力学分析煤热反应机理[J]. 洁净煤技术, 2017, 23(1): 48-51. |
Li Y Y, Wang J P, Li G Y, et al. Application of ReaxFF molecular dynamics on coal thermal reaction mechanism[J]. Clean Coal Technology, 2017, 23(1): 48-51. | |
22 | Liu J, Zhang X L, Lu Q, et al. Mechanism study on the effect of alkali metal ions on the formation of HCN as NOx precursor during coal pyrolysis[J]. Journal of the Energy Institute, 2019, 92(3): 604-612. |
23 | 贺红坡, 刘佳, 洪迪昆, 等. 吡咯类氮在空气中燃烧的分子动力学研究[J].工程热物理学报, 2016, 37(11): 2484-2488. |
He H P, Liu J, Hong D K, et al. ReaxFF molecular dynamics simulations of oxidation of pyrrole type nitrogen[J]. Journal of Engineering Thermophysics, 2016, 37(11): 2484-2488. | |
24 | 毛宇, 贺红坡, 郭欣, 等. 吡咯类氮富氧燃烧的分子动力学研究[J]. 热能动力学工程, 2017, 32(10): 59-65. |
Mao Y, He H P, Guo X, et al. Molecular dynamic study of the oxygen-enriched combustion of pyrrolic nitrogen[J]. Journal of Engineering for Thermal Energy and Power, 2017, 32(10): 59-65. | |
25 | 张小盟, 李宁煜, 高文青. 宁夏煤炭利用效率的影响因素分析[J].煤炭加工与综合利用, 2017, (3): 59-65. |
Zhang X M, Li N Y, Gao W Q. Analysis on the factors affecting the utilization efficiency of coal in Ningxia[J]. Coal Processing & Comprehensive Utilization, 2017, (3): 59-65. | |
26 | 李壮楣, 王艳美, 李平, 等. 宁东红石湾煤大分子模型构建及量子化学计算[J]. 化工学报, 2018, 69(5): 2208-2216. |
Li Z M, Wang Y M, Li P, et al. Macromolecular model construction and quantum chemical calculation of Ningdong Hongshiwan coal[J]. CIESC Journal, 2018, 69(5): 2208-2216. | |
27 | 冯炜, 高红凤, 王贵, 等. 枣泉煤分子模型构建及热解的分子模拟[J]. 化工学报, 2019, 70(4): 1522-1531. |
Feng W, Gao H F, Wang G, et al. Macromolecular model and pyrolysis simulation of Zaoquan coal[J]. CIESC Journal, 2019, 70(4): 1522-1531. | |
28 | Aso H, Matsuoka K, Sharma A, et al. Evaluation of size of graphene sheet in anthracite by a temperature-programmed oxidation method[J]. Energy Fuels, 2004, 18(5): 1309-1314. |
29 | Zhang J L, Weng X X, Han Y, et al. The effect of supercritical water on coal pyrolysis and hydrogen production: a combined ReaxFF and DFT study[J]. Fuel, 2013, 108: 682-690. |
30 | Chen B, Wei X Y, Yang Z S, et al. ReaxFF reactive force field for molecular dynamics simulations of lignite depolymerization in supercritical methanol with lignite-related model compounds[J]. Energy Fuels, 2012, 26(2): 984-989. |
31 | Salmon E, van Duin A C T, Lorant F, et al. Early maturation processes in coal(2): Reactive dynamics simulations using the ReaxFF reactive force field on Morwell brown coal structures[J]. Organic Geochemistry, 2009, 40: 1195-1209. |
32 | Zhang H, Li G Y, Liang Y H, et al. A post-processing program for ReaxFF simulation of chemical structural model of coal[J]. Communications in Computational Chemistry, 2014, 2(1): 1-8. |
33 | Lümmen N. ReaxFF-molecular dynamics simulations of non-oxidative and non-catalyzed thermal decomposition of methane at high temperatures[J]. Physical Chemistry Chemical Physics, 2010, 12: 7883-7893. |
34 | Agrawalla S, van Duin A C T. Development and application of a ReaxFF reactive force field for hydrogen combustion[J]. The Journal of Physical Chemistry A, 2011, 115(6): 960-972. |
35 | Salmon E, van Duin A C T, Lorant F. Thermal decomposition process in algaenan of Botryococcus braunii race L(2): Molecular dynamics simulations using the ReaxFF reactive force field[J]. Organic Geochemistry, 2009, 40(3): 416-427. |
36 | Liu F, Guo H, Smallwood G J. The chemical effect of CO2 replacement of N2 in air on the burning velocity of CH4 and H2 premixed flames[J]. Combustion and Flame, 2003, 133(4): 495-497. |
37 | Glarborg P, Bentzen L L B. Chemical effects of a high CO2 concentration in oxy-fuel combustion of methane[J]. Energy Fuels, 2007, 22(1): 291-296. |
38 | 胡帆, 李鹏飞, 郭军军, 等. 富氧燃烧详细机理评估及机理简化[J].工程热物理学报, 2018, 39(11): 2542-2548. |
Hu F, Li P F, Guo J J, et al. Evaluation of detailed mechanism under oxy-fuel combustion and mechanism reduction[J]. Journal of Engineering Thermophysics, 2018, 39(11): 2542-2548. | |
39 | Shaddix C R, Molina A. Fundamental investigation of NOx formation during oxy-fuel combustion of pulverized coal[J]. Proceedings of the Combustion Institute, 2011, 33(2): 1723-1730. |
40 | 王春波, 雷鸣, 阎维平, 等. 煤在增压富氧燃烧条件下NOx排放特性实验研究[J].中国电机工程学报, 2012, 32(20): 27-33. |
Wang C B, Lei M, Yan W P, et al. Experimental study on NOx release characteristics during pressurized oxy-fuel combustion of pulverized coal[J]. Proceedings of the CSEE, 2012, 32(20): 27-33. | |
41 | 雷鸣, 黄星智, 王春波. 典型煤种O2/CO2/H2O气氛下中高温燃烧时NO的生成特性[J]. 动力工程学报, 2017, 37(6): 432-439. |
Lei M. Huang X Z, Wang C B. NO emission characteristics of typical coals under O2/CO2/H2O atmosphere at intermediate and high temperatures[J]. Journal of Chinese Society of Power Engineering, 2017, 37(6): 432-439. | |
42 | Liu J, Guo X. ReaxFF molecular dynamics simulation of pyrolysis and combustion of pyridine[J]. Fuel Processing Technology, 2017, 161: 107-115. |
43 | 韩健, 刘新华, 何京东, 等. 民用解耦燃煤炉中的NOx和CO同时减排[J]. 化工学报, 2019, 70(5): 1991-1998. |
Han J, Liu X H, He J D, et al. Simultaneous reduction of NOx and CO emissions in domestic decoupling coal-fired stoves[J]. CIESC Journal, 2019, 70(5): 1991-1998. | |
44 | Yan G C, Zhang Z Q, Yan K F. Reactive molecular dynamics simulations of the initial stage of brown coal oxidation at high temperatures[J]. Molecular Physics, 2013, 111(1): 147-156. |
45 | 徐程峙, 辜敏. V2O5/AC中温SCR催化剂的制备及其脱硝性能研究[J]. 炭素技术, 2015, 34(4): 37-41. |
Xu C Z, Gu M. Study on the preparation and denitrification performance of V2O5 /AC medium temperature SCR catalyst[J]. Carbon Techniques, 2015, 34(4): 37-41. | |
46 | Li Y Y, Li G Y, Zhang H, et al. ReaxFF study on nitrogen-transfer mechanism in the oxidation process of lignite[J]. Fuel, 2017, 193: 331-342. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[3] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[4] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[5] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[6] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[7] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[8] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[9] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[10] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[11] | 刘春雨, 周桓宇, 马跃, 岳长涛. CaO调质含油污泥干燥特性及数学模型[J]. 化工学报, 2023, 74(7): 3018-3027. |
[12] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[13] | 刘起超, 周云龙, 陈聪. 起伏振动垂直上升管气液两相流截面含气率分析与计算[J]. 化工学报, 2023, 74(6): 2391-2403. |
[14] | 毕恩哲, 李双喜, 沙廉翔, 刘登宇, 陈凯放. 高温动压涨圈密封结构参数多目标优化分析[J]. 化工学报, 2023, 74(6): 2565-2579. |
[15] | 王承泽, 顾凯丽, 张晋华, 石建轩, 刘艺娓, 李锦祥. 硫化协同老化零价铁增效去除水中Cr(Ⅵ)的作用机制[J]. 化工学报, 2023, 74(5): 2197-2206. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||