化工学报 ›› 2020, Vol. 71 ›› Issue (5): 1995-2003.DOI: 10.11949/0438-1157.20191300
刘宏1,2(),赵雅静1,2,李英栋1,2,李凭力1,2()
收稿日期:
2019-10-31
修回日期:
2020-02-28
出版日期:
2020-05-05
发布日期:
2020-05-05
通讯作者:
李凭力
作者简介:
刘宏(1992—),男,硕士研究生,Hong LIU1,2(),Yajing ZHAO1,2,Yingdong LI1,2,Pingli LI1,2()
Received:
2019-10-31
Revised:
2020-02-28
Online:
2020-05-05
Published:
2020-05-05
Contact:
Pingli LI
摘要:
基于HIDiC的理论和Aspen 模拟的结果,建立了新型内部能量集成的精馏塔的塔节结构,对筛孔式结构的复合HIDiC塔节做了CFD模拟,探索了不同参数下的水力学性能,优化了新型复合塔节的结构。结果表明:对于筛孔式复合塔节,减小塔板孔径,降低出口堰高有利于提高传质和传热效果。利用SolidWorks软件针对温度与压力下的双重效应做了静应力分析,通过HIDiC理论,模型构建,水力学模拟相互验证,将HIDiC逐板换热的理论与实际模型完美结合。
中图分类号:
刘宏, 赵雅静, 李英栋, 李凭力. 新型复合式内部能量集成的精馏塔的机械设计与水力学模拟[J]. 化工学报, 2020, 71(5): 1995-2003.
Hong LIU, Yajing ZHAO, Yingdong LI, Pingli LI. Mechanical design and hydraulics simulation of a new complex internal heat integrated distillation column[J]. CIESC Journal, 2020, 71(5): 1995-2003.
塔板数 | 提馏段质量分数 | 精馏段质量分数 | 传热系数/ (W/(m2·K)) | 换热管 面积/m2 | 降液板 面积/m2 | 总传热 面积/m2 | ||
---|---|---|---|---|---|---|---|---|
苯 | 甲苯 | 苯 | 甲苯 | |||||
1 | 0.4853 | 0.5146 | 0.9944 | 0.0055 | 850 | 1.46952 | 0.001287 | 1.470807 |
2 | 0.3568 | 0.6431 | 0.9871 | 0.0128 | 850 | 1.46952 | 0.001287 | 1.470807 |
3 | 0.2383 | 0.7616 | 0.9821 | 0.0178 | 850 | 1.2246 | 0.001287 | 1.225887 |
4 | 0.1478 | 0.8521 | 0.9729 | 0.0270 | 850 | 1.2246 | 0.001287 | 1.225887 |
5 | 0.0876 | 0.9123 | 0.9574 | 0.0425 | 850 | 1.30624 | 0.001716 | 1.307956 |
6 | 0.0509 | 0.9490 | 0.9318 | 0.0681 | 850 | 0.97968 | 0.001716 | 0.981396 |
7 | 0.0294 | 0.9705 | 0.8907 | 0.1092 | 850 | 0.849056 | 0.001716 | 0.850772 |
8 | 0.0170 | 0.9829 | 0.8280 | 0.1719 | 850 | 1.06132 | 0.002145 | 1.063465 |
9 | 0.0098 | 0.9901 | 0.7401 | 0.2598 | 850 | 0.8164 | 0.002145 | 0.818545 |
10 | 0.0054 | 0.9945 | 0.6314 | 0.3685 | 850 | 0.6123 | 0.002145 | 0.614445 |
表1 内部能量集成的精馏塔Aspen模拟结果
Table 1 Result of HIDiC based on Aspen simulation
塔板数 | 提馏段质量分数 | 精馏段质量分数 | 传热系数/ (W/(m2·K)) | 换热管 面积/m2 | 降液板 面积/m2 | 总传热 面积/m2 | ||
---|---|---|---|---|---|---|---|---|
苯 | 甲苯 | 苯 | 甲苯 | |||||
1 | 0.4853 | 0.5146 | 0.9944 | 0.0055 | 850 | 1.46952 | 0.001287 | 1.470807 |
2 | 0.3568 | 0.6431 | 0.9871 | 0.0128 | 850 | 1.46952 | 0.001287 | 1.470807 |
3 | 0.2383 | 0.7616 | 0.9821 | 0.0178 | 850 | 1.2246 | 0.001287 | 1.225887 |
4 | 0.1478 | 0.8521 | 0.9729 | 0.0270 | 850 | 1.2246 | 0.001287 | 1.225887 |
5 | 0.0876 | 0.9123 | 0.9574 | 0.0425 | 850 | 1.30624 | 0.001716 | 1.307956 |
6 | 0.0509 | 0.9490 | 0.9318 | 0.0681 | 850 | 0.97968 | 0.001716 | 0.981396 |
7 | 0.0294 | 0.9705 | 0.8907 | 0.1092 | 850 | 0.849056 | 0.001716 | 0.850772 |
8 | 0.0170 | 0.9829 | 0.8280 | 0.1719 | 850 | 1.06132 | 0.002145 | 1.063465 |
9 | 0.0098 | 0.9901 | 0.7401 | 0.2598 | 850 | 0.8164 | 0.002145 | 0.818545 |
10 | 0.0054 | 0.9945 | 0.6314 | 0.3685 | 850 | 0.6123 | 0.002145 | 0.614445 |
理论板 | 精馏段开孔数 | 提馏段开孔数 | 塔径/mm | 提馏段筛孔直径/mm | 精馏段筛孔直径/mm | 精馏段 堰高 /mm | 提馏段堰高/mm | 内部列管壁厚/mm | 精馏段塔板液泛率 | 提馏段塔板液泛率 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 32 | 120 | 250 | 6 | 4 | 25 | 20 | 2 | 0.7 | 0.58 |
2 | 35 | 120 | 250 | 6 | 4 | 25 | 20 | 2 | 0.68 | 0.55 |
3 | 50 | 100 | 250 | 6 | 4 | 25 | 20 | 2 | 0.65 | 0.53 |
4 | 60 | 100 | 250 | 6 | 4 | 25 | 20 | 2 | 0.64 | 0.53 |
5 | 80 | 80 | 250 | 8 | 4 | 25 | 20 | 2 | 0.64 | 0.54 |
6 | 80 | 60 | 250 | 8 | 4 | 25 | 20 | 2 | 0.62 | 0.54 |
7 | 100 | 52 | 250 | 8 | 4 | 25 | 20 | 2 | 0.65 | 0.55 |
8 | 100 | 52 | 250 | 10 | 5 | 25 | 20 | 2 | 0.63 | 0.58 |
9 | 122 | 40 | 250 | 10 | 5 | 25 | 20 | 2 | 0.62 | 0.56 |
10 | 122 | 30 | 250 | 10 | 5 | 25 | 20 | 2 | 0.64 | 0.57 |
表2 Aspen模拟的内部能量集成的精馏塔水力学参数
Table 2 Hydraulic parameters of HIDiC based on Aspen simulation
理论板 | 精馏段开孔数 | 提馏段开孔数 | 塔径/mm | 提馏段筛孔直径/mm | 精馏段筛孔直径/mm | 精馏段 堰高 /mm | 提馏段堰高/mm | 内部列管壁厚/mm | 精馏段塔板液泛率 | 提馏段塔板液泛率 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 32 | 120 | 250 | 6 | 4 | 25 | 20 | 2 | 0.7 | 0.58 |
2 | 35 | 120 | 250 | 6 | 4 | 25 | 20 | 2 | 0.68 | 0.55 |
3 | 50 | 100 | 250 | 6 | 4 | 25 | 20 | 2 | 0.65 | 0.53 |
4 | 60 | 100 | 250 | 6 | 4 | 25 | 20 | 2 | 0.64 | 0.53 |
5 | 80 | 80 | 250 | 8 | 4 | 25 | 20 | 2 | 0.64 | 0.54 |
6 | 80 | 60 | 250 | 8 | 4 | 25 | 20 | 2 | 0.62 | 0.54 |
7 | 100 | 52 | 250 | 8 | 4 | 25 | 20 | 2 | 0.65 | 0.55 |
8 | 100 | 52 | 250 | 10 | 5 | 25 | 20 | 2 | 0.63 | 0.58 |
9 | 122 | 40 | 250 | 10 | 5 | 25 | 20 | 2 | 0.62 | 0.56 |
10 | 122 | 30 | 250 | 10 | 5 | 25 | 20 | 2 | 0.64 | 0.57 |
精馏塔 | 压缩比 | 回流比 | 再沸器 负荷/kW | 冷凝器负荷/kW | 蒸汽/ (CNY/d) | 冷却水/ (CNY/d) | 电力/ (CNY/d) | 设备投资×10-4/ (CNY/a) | 运行总成本×10-4/(CNY/a) |
---|---|---|---|---|---|---|---|---|---|
CDIC | - | 10.2 | 40.2 | -40.2 | 125 | 58 | 0 | 1.3 | 7.9 |
HIDiC | 4 | 5.1 | 17.2 | -15.8 | 15 | 6 | 78.3 | 2.3 | 5.8 |
表3 普通精馏和内部能量集成塔的运行条件和成本
Table 3 Operating conditions and cost of CDIC and HIDiC
精馏塔 | 压缩比 | 回流比 | 再沸器 负荷/kW | 冷凝器负荷/kW | 蒸汽/ (CNY/d) | 冷却水/ (CNY/d) | 电力/ (CNY/d) | 设备投资×10-4/ (CNY/a) | 运行总成本×10-4/(CNY/a) |
---|---|---|---|---|---|---|---|---|---|
CDIC | - | 10.2 | 40.2 | -40.2 | 125 | 58 | 0 | 1.3 | 7.9 |
HIDiC | 4 | 5.1 | 17.2 | -15.8 | 15 | 6 | 78.3 | 2.3 | 5.8 |
材质 | 屈服强度/(N/m2) | 弹性模量/(N/m2) | 质量密度/(kg/m3) | 抗剪模量/(N/m2) | 泊松比 | 热扩张系数 /K-1 |
---|---|---|---|---|---|---|
304 | 2.06×108 | 1.9×1011 | 8000 | 7.5×1010 | 0.29 | 1.8×10-5 |
表4 内部能量集成的精馏塔塔节装配体属性参数
Table 4 Assembly property parameters for HIDiC
材质 | 屈服强度/(N/m2) | 弹性模量/(N/m2) | 质量密度/(kg/m3) | 抗剪模量/(N/m2) | 泊松比 | 热扩张系数 /K-1 |
---|---|---|---|---|---|---|
304 | 2.06×108 | 1.9×1011 | 8000 | 7.5×1010 | 0.29 | 1.8×10-5 |
参数 | 精馏段 | 提馏段 |
---|---|---|
降液管长/mm | 214 | 620 |
出口堰高/mm | 25 | 20 |
塔径/mm | 250 | 250 |
筛孔直径/mm | 5 | 10 |
表5 结构a HIDiC塔节CFD模拟的几何参数
Table 5 Geometrical characteristics of condition a for tray of CFD simulation
参数 | 精馏段 | 提馏段 |
---|---|---|
降液管长/mm | 214 | 620 |
出口堰高/mm | 25 | 20 |
塔径/mm | 250 | 250 |
筛孔直径/mm | 5 | 10 |
参数 | 精馏段 | 提馏段 |
---|---|---|
降液管长/mm | 214 | 620 |
出口堰高/mm | 20 | 20 |
塔径/mm | 200 | 200 |
筛孔直径/mm | 4 | 8 |
表6 结构b HIDiC塔节CFD模拟的几何参数
Table 6 Geometrical characteristics of condition b for tray of CFD simulation
参数 | 精馏段 | 提馏段 |
---|---|---|
降液管长/mm | 214 | 620 |
出口堰高/mm | 20 | 20 |
塔径/mm | 200 | 200 |
筛孔直径/mm | 4 | 8 |
1 | Lynd L R, Grethlein H E. Distillation with intermediate heat pumps and optimal sidestream return[J]. AIChE Journal, 1986, 32(8): 1347-1359. |
2 | 刘兴高, 钱积新. 内部热耦合精馏塔的初步设计(Ⅰ): 模型化和操作分析[J]. 化工学报, 2000, 51(3): 421-424. |
Liu X G, Qian J X. Principium design of ideal internal thermally coupled distillation columns (Ⅰ): Modeling and operation behavior[J]. Journal of Chemical Industry and Engineering (China), 2000, 51(3): 421-424. | |
3 | 刘兴高, 钱积新. 内部热耦合精馏塔的初步设计(Ⅱ): 控制分析和参数优化[J]. 化工学报, 2000, 51(3): 425-428. |
Liu X G, Qian J X. Principium design of ideal internal thermally coupled distillation columns (Ⅱ): Control analysis and parameter optimization[J]. Journal of Chemical Industry and Engineering(China), 2000, 51(3): 425-428. | |
4 | Tsirlin A M, Vyasileva E N, Romanova T S. Finding the thermodynamically optimal separation sequence for multicomponent mixtures and the optimum distribution of the heat-and mass-transfer surface areas[J]. Theoretical Foundations of Chemical Engineering, 2009, 43(3): 238-244. |
5 | 赵雄, 罗祎青, 闫兵海, 等. 内部能量集成精馏塔的模拟研究及其节能特性分析[J]. 化工学报, 2009, 60(1): 142-150. |
Zhao X, Luo Y Q, Yan B H, et al. Simulation study of internally heat-integrated distillation column and its characteristics for energy saving[J]. CIESC Journal, 2009, 60(1): 142-150. | |
6 | Kaibel G. Distillation columns with vertical partitions[J]. Chemical Engineering & Technology, 1987, 10(1): 92-98. |
7 | Bandyopadhyay S. Thermal integration of a distillation column through side-exchangers[J]. Chemical Engineering Research and Design, 2007, 85(1): 155-166. |
8 | Fitzmorris R E, Mah R S H. Improving distillation column design using thermodynamic availability analysis[J]. AIChE Journal, 1980, 26(2): 265-273. |
9 | Mah R S H, Nicholas Jr J J, Wodnik R B. Distillation with secondary reflux and vaporization: a comparative evaluation[J]. AIChE Journal, 1977, 23(5): 651-658. |
10 | Nakaiwa M, Huang K, Endo A, et al. Internally heat-integrated distillation columns: a review[J]. Chemical Engineering Research and Design, 2003, 81(1): 162-177. |
11 | Olujic Z, Fakhri F, de Rijke A, et al. Internal heat integration-the key to an energy-conserving distillation column[J]. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 2003, 78(2/3): 241-248. |
12 | 陈大为. 精馏塔内部能量集成方式及其比较[D]. 天津: 天津大学, 2013. |
Chen D W. Configuration and their comparison for internal heat integration in distillation columns[D]. Tianjin: Tianjin University, 2013. | |
13 | Gadalla M, Jiménez L, Olujic Z, et al. A thermo-hydraulic approach to conceptual design of an internally heat-integrated distillation column (i-HIDiC)[J]. Computers and Chemical Engineering, 2007, 31(10):1346-1354. |
14 | Cabrera-Ruiz J, Jiménez-Gutiérrez A, Segovia-Hernández J G. Assessment of the implementation of heat-integrated distillation columns for the separation of ternary mixtures[J]. Industrial & Engineering Chemistry Research, 2011, 50(4): 2176-2181. |
15 | Wakabayashi T, Hasebe S. Higher energy saving with new heat integration arrangement in heat-integrated distillation column[J]. AIChE Journal, 2015, 61(10): 3479-3488. |
16 | Cong L, Liu X. Temperature inferential control of heat-integrated distillation column based on variable sensitive stage temperature set-point[J]. The Canadian Journal of Chemical Engineering, 2019, 97(11): 2952-2960. |
17 | Jana A K. A novel divided-wall heat integrated distillation column: thermodynamic and economic feasibility[J]. Industrial & Engineering Chemistry Research, 2018, 57(36): 12127-12135. |
18 | Wendt M, Königseder R, Li P, et al. Theoretical and experimental studies on startup strategies for a heat-integrated distillation column system[J]. Chemical Engineering Research and Design, 2003, 81(1): 153-161. |
19 | 许良华. 精馏系统内部能量集成的实验与模拟分析研究[D]. 天津: 天津大学, 2013. |
Xu L H. On experimental and simulation analysis for distillation systems with internal heat integration[D]. Tianjin: Tianjin University, 2013. | |
20 | 龚超. 完全热耦合精馏塔的设计与模拟研究[D]. 天津: 天津大学, 2012. |
Gong C. The design and simulation of fully thermally coupled distillation column[D]. Tianjin: Tianjin University, 2012. | |
21 | 陈旭东. 塔段透热能量集成精馏塔模拟及研究[D]. 天津: 天津大学, 2009. |
Chen X D. Simulation of diabatic distillation with heat integration between column sections[D]. Tianjin: Tianjin University, 2009. | |
22 | Gadalla M, Jiménez L, Olujic Z, et al. A thermo-hydraulic approach to conceptual design of an internally heat-integrated distillation column (i-HIDiC)[J]. Computers & Chemical Engineering, 2007, 31(10): 1346-1354. |
23 | Bisgaard T, Skogestad S, Huusom J K, et al. Optimal operation and stabilising control of the concentric heat-integrated distillation column[J]. Computers & Chemical Engineering, 2016, 49(7): 747-752. |
24 | 徐琰, 董海峰, 田肖, 等. 鼓泡塔中离子液体-空气两相流的 CFD-PBM 耦合模拟[J]. 化工学报, 2011, 62(10): 2699-2706. |
Xu Y, Dong H F, Tian X, et al. CFD-PBM coupled simulation of ionic liquid-air two-phase flow in bubble column[J]. CIESC Journal, 2011, 62(10): 2699-2706. | |
25 | 王立成, 王晓玲, 刘雪艳, 等. CFD在精馏分离中的应用[J]. 化工进展, 2009, 28(s2): 351-354. |
Wang L C, Wang X L, Liu X Y, et al. Application of CFD in distillation separation[J]. Chemical Industry and Engineering Progress, 2009, 28(s2): 351-354. | |
26 | 王峰, 张继军, 张少峰. 计算流体力学(CFD)在精馏塔板上的应用[J]. 现代化工, 2014, 34(1):152-156. |
Wang F,Zhang J J,Zhang S F. Research progress of computational fluid dynamics in distillation tray[J]. Modern Chemical Industry, 2014, 34(1):152-156. | |
27 | Wang Y, Du S, Zhu H G, et al. CFD simulation of hydraulics of dividing wall sieve trays[J]. Advanced Materials Research, 2012, 476/477/478:1345-1350. |
28 | Rodríguez-Ángeles M A, Gómez-Castro F I, Segovia-Hernández J G, et al. Mechanical design and hydrodynamic analysis of sieve trays in a dividing wall column for a hydrocarbon mixture[J]. Chemical Engineering and Processing: Process Intensification, 2015, 97: 55-65. |
29 | Zarei A, Hosseini S H, Rahimi R. CFD and experimental studies of liquid weeping in the circular sieve tray columns[J]. Chemical Engineering Research and Design, 2013, 91(12): 2333-2345. |
30 | 聂勇, 计建炳, 徐之超, 等. 复合塔板气液运动的实验研究[J]. 高校化学工程学报, 2003, 17(4): 365-371. |
Nie Y, Ji J B, Xu Z C, et al. Study on the gas-liquid performance of the compound tray[J]. Journal of Chemical Engineering of Chinese Universities, 2003, 17(4): 365-371. | |
31 | 李凭力, 刘宏, 李英栋, 等. 一种新型内部能量集成的精馏塔系统配套装置及方法: 110180205A[P]. 2019-08-30. |
Li P L, Liu H, Li Y D, et al. A new type of internal energy integrated distillation system supporting device and method: 110180205A[P]. 2019-08-30. | |
32 | Jiang S, Gao H, Sun J, et al. Modeling fixed triangular valve tray hydraulics using computational fluid dynamics[J]. Chemical Engineering and Processing: Process Intensification, 2012, 52(2): 74-84. |
33 | Krishna R, van Baten J M. Modelling sieve tray hydraulics using computational fluid dynamics[J]. Chemical Engineering Research and Design, 2003, 81(1): 27-38. |
[1] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[2] | 李贵贤, 曹阿波, 孟文亮, 王东亮, 杨勇, 周怀荣. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009. |
[3] | 刘尚豪, 贾胜坤, 罗祎青, 袁希钢. 基于梯度提升决策树的三组元精馏流程结构最优化[J]. 化工学报, 2023, 74(5): 2075-2087. |
[4] | 李木金, 胡松, 施德磐, 赵鹏, 高瑞, 李进龙. 环氧丁烷尾气溶剂吸收及精制工艺[J]. 化工学报, 2023, 74(4): 1607-1618. |
[5] | 袁海鸥, 叶方俊, 张硕, 罗祎青, 袁希钢. 考虑中间换热器的能量集成精馏序列合成[J]. 化工学报, 2023, 74(2): 796-806. |
[6] | 刘会影, 贾胜坤, 罗祎青, 袁希钢. 气相进料对隔板精馏塔优化设计的影响[J]. 化工学报, 2022, 73(7): 3090-3098. |
[7] | 刘鑫, 潘阳, 刘公平, 方静, 李春利, 李浩. 渗透汽化-隔壁塔精馏耦合初步分离费托合成水的过程研究[J]. 化工学报, 2022, 73(5): 2020-2030. |
[8] | 段文婷, 任思月, 冯霄, 王彧斐. 与换热网络热集成的精馏塔压优化[J]. 化工学报, 2022, 73(5): 2052-2059. |
[9] | 石晓青, 朱炜玄, 叶昊天, 韩志忠, 董宏光. 碳五隔壁反应精馏预处理工艺模拟及多目标优化[J]. 化工学报, 2022, 73(3): 1246-1255. |
[10] | 邬云飞, 栾小丽, 刘飞. 基于迁移学习的2,6-二甲酚纯度近红外光谱在线检测[J]. 化工学报, 2022, 73(2): 782-791. |
[11] | 柳旭, 许松林, 王燕飞. 原甲酸三甲酯-醋酸萃取精馏全局多目标优化[J]. 化工学报, 2022, 73(10): 4518-4526. |
[12] | 宋振兴, 崔现宝, 张缨, 张雪梅, 何杰, 冯天扬, 王纪孝. 混合离子液体催化反应精馏合成乙酸正己酯[J]. 化工学报, 2021, 72(8): 4155-4165. |
[13] | 王东亮, 谢江鹏, 周怀荣, 孟文亮, 杨勇, 李德磊. 基于MDEA的烟气SO2捕集过程工艺参数和能量集成分析[J]. 化工学报, 2021, 72(3): 1521-1528. |
[14] | 陈熙理, 孙国铭, 贾胜坤, 罗祎青, 袁希钢. 基于决策树的三组元精馏序列结构最优合成规则识别[J]. 化工学报, 2021, 72(3): 1430-1437. |
[15] | 彭肖祎, 董轩, 廖祖维, 杨遥, 孙婧元, 蒋斌波, 王靖岱, 阳永荣. 数学规划与图形方法相结合设计热集成用水网络[J]. 化工学报, 2021, 72(2): 1047-1058. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||