化工学报 ›› 2022, Vol. 73 ›› Issue (7): 3090-3098.doi: 10.11949/0438-1157.20220121

• 分离工程 • 上一篇    下一篇

气相进料对隔板精馏塔优化设计的影响

刘会影1(),贾胜坤1,2(),罗祎青1,2,袁希钢1,2,3()   

  1. 1.天津大学化工学院,天津 300354
    2.天津大学化学工程研究所,天津 300354
    3.化学工程联合国家重点实验室 (天津大学),天津 300354
  • 收稿日期:2022-01-21 修回日期:2022-03-01 出版日期:2022-07-05 发布日期:2022-08-01
  • 通讯作者: 贾胜坤,袁希钢 E-mail:lhy_1997@tju.edu.cn;jiask@tju.edu.cn;yuanxg@tju.edu.cn
  • 作者简介:刘会影(1997—),女,硕士研究生,lhy_1997@tju.edu.cn
  • 基金资助:
    国家自然科学基金项目(22178247)

Influence of vapor feed on optimal design of dividing wall column

Huiying LIU1(),Shengkun JIA1,2(),Yiqing LUO1,2,Xigang YUAN1,2,3()   

  1. 1.School of Chemical Engineering and Technology, Tianjin 300354, China
    2.Chemical Engineering Research Center, Tianjin University, Tianjin 300354, China
    3.State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300354, China
  • Received:2022-01-21 Revised:2022-03-01 Published:2022-07-05 Online:2022-08-01
  • Contact: Shengkun JIA,Xigang YUAN E-mail:lhy_1997@tju.edu.cn;jiask@tju.edu.cn;yuanxg@tju.edu.cn

摘要:

隔板精馏塔(DWC)在节能和节省设备投资方面具有十分突出的优势,隔板精馏塔中隔板位置是重要的设计变量,影响分离效果及能耗,当进料中含有气相时这种影响更加显著。选用苯、甲苯和对二甲苯三元物系,研究了进料的气相分率对隔板位置的影响并确定最优隔板位置。采用严格模拟方法,以年度总费用(TAC)为评价指标,比较不同进料气相分率下隔板塔的经济性,其中气相进料较液相进料TAC最高可节省23.33%。并通过灵敏度分析展示了在进料中含有气相时确定最优隔板位置的重要性。

关键词: 精馏, 隔板塔, 气相进料, 隔板位置, 优化

Abstract:

Dividing wall column (DWC) has outstanding advantages in terms of energy saving and investment cost for distillation separation. The positioning of the dividing wall effectively affects the separation efficiency and energy consumption, especially when the feed contains vapor phase. In the present paper, ternary mixture of benzene, toluene, and p-xylene is selected as the separation system to study the effect of the feed vapor fraction on the optimal positioning of the dividing wall in a DWC and proposes a method for determining the optimal position. By using rigorous simulation and the total annual cost (TAC) as the objective function, the economic performance of the DWC is investigated under different vapor fractions of the feed, and feed with vapor can save up to 23.33% of TAC compared to feed with liquid. The results demonstrate the importance of optimal dividing wall positioning when the feed contains vapor phase by sensitivity analysis.

Key words: distillation, dividing wall column, vapor feed, dividing wall position, optimization

中图分类号: 

  • TQ 028.3

图1

隔板位置布置图"

图2

隔板塔设计示意图"

图3

隔板塔设计框图"

表1

进料状况和产品要求"

变量变量值
进料组成/%(mol)A:0.3;B:0.3;C:0.4
进料压力/kPa101.325
进料气相分率γf0/1
产品纯度要求/%(mol)A:0.98; B:0.98; C:0.98

表2

不同进料条件下的设计变量和相关费用"

变量工况a工况b工况c
进料气相分率γf011
结构变量
塔径D/m3.0793.0793.491
隔板位置参数β0.63760.63760.8221
各塔段塔板数
558
111113
101011
10108
111110
111110
操作变量
进料流量F/(kmol/h)500257500
塔顶压力P/kPa32.9532.9552.85
回流比RR2.6796.254.942
侧采分率Sf/%(mol)0.58060.31480.5602
再沸比BR2.1451.9591.267
液相分割比RL/%(mol)0.32850.46510.622
气相分割比RV/%(mol)0.59110.12810.4519
费用
设备费用/104 USD142.7133.9153.2
操作费用/104 USD109.354.7969.18
TAC/104 USD156.999.43120.3
(TAC/F)/(104 USD/kmol)0.31380.38690.2405

图4

隔板精馏塔塔板压降分布"

图5

不同进料气相分率下费用变化"

图6

不同进料气相流率下隔板塔隔板位置参数变化"

图7

TAC值随隔板位置变化"

图8

气相/液相分割比随隔板位置变化"

1 Kaibel G. Distillation columns with vertical partitions[J]. Chemical Engineering & Technology - CET, 1987, 10(1): 92-98.
2 Fidkowski Z, Królikowski L. Minimum energy requirements of thermally coupled distillation systems[J]. AIChE Journal, 1987, 33(4): 643-653.
3 Ling H, Cai Z, Wu H, et al. Remixing control for divided-wall columns[J]. Industrial & Engineering Chemistry Research, 2011, 50(22): 12694-12705.
4 Hernández S, Pereira-Pech S, Jiménez A, et al. Energy efficiency of an indirect thermally coupled distillation sequence[J]. The Canadian Journal of Chemical Engineering, 2008, 81(5): 1087-1091.
5 Amminudin K A, Smith R. Design and optimization of fully thermally coupled distillation columns[J]. Chemical Engineering Research and Design, 2001, 79(7): 716-724.
6 Hernández S, Jiménez A. Design of energy-efficient Petlyuk systems[J]. Computers & Chemical Engineering, 1999, 23(8): 1005-1010.
7 Ho Y C, Ward J D, Yu C C. Quantifying potential energy savings of divided wall columns based on degree of remixing[J]. Industrial & Engineering Chemistry Research, 2011, 50(3): 1473-1487.
8 Maralani L T, Yuan X G, Luo Y Q, et al. Numerical investigation on effect of vapor split ratio to performance and operability for dividing wall column[J]. Chinese Journal of Chemical Engineering, 2013, 21(1): 72-78.
9 龚超, 余爱平, 罗祎青, 等. 完全能量耦合精馏塔的设计、模拟与优化[J]. 化工学报, 2012, 63(1): 177-184.
Gong C, Yu A P, Luo Y Q, et al. Design, simulation and optimization of fully thermally coupled distillation column[J]. CIESC Journal, 2012, 63(1): 177-184.
10 Kim Y H. Rigorous design of extended fully thermally coupled distillation columns[J]. Chemical Engineering Journal, 2002, 89(1/2/3): 89-99.
11 Amminudin K A, Smith R, Thong D Y C, et al. Design and optimization of fully thermally coupled distillation columns(Ⅰ): Preliminary design and optimization methodology[J]. Chemical Engineering Research and Design, 2001, 79(7): 701-715.
12 Wenzel S, Röhm H J. Design of complex distillation columns by overall-cost optimization[J]. Chemical Engineering & Technology, 2004, 27(5): 484-490.
13 牟祖霖, 盖晓龙, 袁希钢, 等. 三组分精馏隔板塔的操作柔性模拟与分析[J]. 化工学报, 2016, 67(2): 573-579.
Mu Z L, Ge X L, Yuan X G, et al. Simulation and analysis of operation flexibility of divided wall column for ternary distillation[J]. CIESC Journal, 2016, 67(2): 573-579.
14 Ge X L, Ao C, Yuan X G, et al. Investigation of the effect of the vapor split ratio decision in design on operability for DWC by numerical simulation[J]. Industrial & Engineering Chemistry Research, 2014, 53(34): 13383-13390.
15 敖琛, 袁希钢, 罗祎青, 等. 进料组成改变对隔板塔经济性影响的模拟[J]. 化学工业与工程, 2016, 33(6): 74-79.
Ao C, Yuan X G, Luo Y Q, et al. Numerical simulation for economical behavior of DWC in case of changes in feed composition[J]. Chemical Industry and Engineering, 2016, 33(6): 74-79.
16 朱怀工, 王燕, 张敏卿. 进料性质对立式隔板塔操作特性的影响[J]. 化工进展, 2009, 28(4): 579-583.
Zhu H G, Wang Y, Zhang M Q. Influence of feed property on the operation of dividing wall column[J]. Chemical Industry and Engineering Progress, 2009, 28(4): 579-583.
17 王维德, 黄颖芬, 晋正茂, 等. 进料热状况对精馏能耗影响[J]. 华侨大学学报(自然科学版), 2008, 29(2): 260-262.
Wang W D, Huang Y F, Jin Z M, et al. Effect of thermal conditions of feed on energy consumption of distillation[J]. Journal of Huaqiao University (Natural Science), 2008, 29(2): 260-262.
18 Olujić, Dejanović I, Kaibel B, et al. Dimensioning multipartition dividing wall columns[J]. Chemical Engineering & Technology, 2012, 35(8): 1392-1404.
19 Kang K J, Harvianto G R, Lee M. Hydraulic driven active vapor distributor for enhancing operability of a dividing wall column[J]. Industrial & Engineering Chemistry Research, 2017, 56(22): 6493-6498.
20 Li F, Luo Y Q, Yuan X G. Equation-oriented optimization of a distillation column considering stage hydraulics[J]. Industrial & Engineering Chemistry Research, 2020, 59(30): 13657-13668.
21 Dai X, Ye Q, Qin J W, et al. Energy-saving dividing-wall column design and control for benzene extraction distillation via mixed entrainer[J]. Chemical Engineering & Processing: Process Intensification, 2016, 100: 49-64.
22 Qian X, Jia S K, Huang K J, et al. Optimal design of Kaibel dividing wall columns based on improved particle swarm optimization methods[J]. Journal of Cleaner Production, 2020, 273:123041.
23 Sun L Y, Wang Q Y, Li L M, et al. Design and control of extractive dividing wall column for separating benzene/cyclohexane mixtures[J]. Industrial & Engineering Chemistry Research, 2014, 53(19):8120-8131.
24 Quirante N, Javaloyes J, Caballero J A. Rigorous design of distillation columns using surrogate models based on Kriging interpolation[J]. AIChE Journal, 2015, 61(7): 2169-2187.
25 马英杰. 采用虚拟瞬态连续性模型优化复杂精馏系统[D]. 天津: 天津大学, 2017.
Ma Y J. Simultaneous optimization of complex distillation systems with a new pseudo-transient continuation model[D]. Tianjin: Tianjin University, 2017.
26 Ma Y J, Luo Y Q, Yuan X G. Simultaneous optimization of complex distillation systems with a new pseudo-transient continuation model[J]. Industrial & Engineering Chemistry Research, 2017, 56(21): 6266-6274.
27 Bennett D L, Agrawal R, Cook P J. New pressure drop correlation for sieve tray distillation columns[J]. AIChE Journal, 1983, 29(3): 434-442.
28 Dejanović I, Matijašević L, Jansen H, et al. Designing a packed dividing wall column for an aromatics processing plant[J]. Industrial & Engineering Chemistry Research, 2011, 50(9): 5680-5692.
29 Górak A, Olujić Z. Distillation: Equipment and Processes[M]. London: Academic Press, 2014: 307-315.
30 Dowling A W, Biegler L T. Rigorous optimization-based synthesis of distillation cascades without integer variables[M]//Computer Aided Chemical Engineering. Amsterdam: Elsevier, 2014: 55-60.
31 Dowling A W, Biegler L T. A framework for efficient large scale equation-oriented flowsheet optimization[J]. Computers & Chemical Engineering, 2015, 72: 3-20.
32 Douglas J M. Conceptual Design of Chemical Processes[M]. New York: McGraw-Hill Book Company, 1988: 30-216.
33 Long H, Clark J, Benyounes H, et al. Optimal design and economic evaluation of dividing-wall columns[J]. Chemical Engineering & Technology, 2016, 39(6): 1077-1086.
[1] 赵春雷, 郭亮, 高聪, 宋伟, 吴静, 刘佳, 刘立明, 陈修来. 代谢工程改造大肠杆菌生产软骨素[J]. 化工学报, 2023, 74(5): 2111-2122.
[2] 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045.
[3] 刘尚豪, 贾胜坤, 罗祎青, 袁希钢. 基于梯度提升决策树的三组元精馏流程结构最优化[J]. 化工学报, 2023, 74(5): 2075-2087.
[4] 周必茂, 许世森, 王肖肖, 刘刚, 李小宇, 任永强, 谭厚章. 烧嘴偏转角度对气化炉渣层分布特性的影响[J]. 化工学报, 2023, 74(5): 1939-1949.
[5] 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973.
[6] 苏晓丹, 朱干宇, 李会泉, 郑光明, 孟子衡, 李防, 杨云瑞, 习本军, 崔玉. 湿法磷酸半水工艺考察与石膏结晶过程研究[J]. 化工学报, 2023, 74(4): 1805-1817.
[7] 李纪元, 李金旺, 周刘伟. 不同扰流结构冷板传热性能研究[J]. 化工学报, 2023, 74(4): 1474-1488.
[8] 高小永, 黄付宇, 郑万鹏, 彭雕, 杨一旭, 黄德先. 考虑调度操作安全平稳性的炼油化工生产过程调度优化[J]. 化工学报, 2023, 74(4): 1619-1629.
[9] 李木金, 胡松, 施德磐, 赵鹏, 高瑞, 李进龙. 环氧丁烷尾气溶剂吸收及精制工艺[J]. 化工学报, 2023, 74(4): 1607-1618.
[10] 许文烜, 江锦波, 彭新, 门日秀, 刘畅, 彭旭东. 宽速域三种典型型槽油气密封泄漏与成膜特性对比研究[J]. 化工学报, 2023, 74(4): 1660-1679.
[11] 张生安, 刘桂莲. 高效太阳能电解水制氢系统及其性能的多目标优化[J]. 化工学报, 2023, 74(3): 1260-1274.
[12] 顾学荣, 刘硕士, 杨思宇. 基于并行EGO和代理模型辅助的多参数优化方法研究[J]. 化工学报, 2023, 74(3): 1205-1215.
[13] 陈俊先, 姬忠礼, 赵瑜, 张倩, 周岩, 刘猛, 刘震. 基于微波技术的天然气管道内颗粒物在线检测方法研究[J]. 化工学报, 2023, 74(3): 1042-1053.
[14] 袁海鸥, 叶方俊, 张硕, 罗祎青, 袁希钢. 考虑中间换热器的能量集成精馏序列合成[J]. 化工学报, 2023, 74(2): 796-806.
[15] 何仁初, 张朝晖, 杨明磊, 王聪, 奚桢浩. 考虑碳排放因素的汽油调合在线优化[J]. 化工学报, 2023, 74(2): 818-829.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!