化工学报 ›› 2020, Vol. 71 ›› Issue (6): 2768-2779.DOI: 10.11949/0438-1157.20200049
收稿日期:
2020-01-14
修回日期:
2020-03-26
出版日期:
2020-06-05
发布日期:
2020-06-05
通讯作者:
王丹
作者简介:
田济阳(1993—),男,硕士研究生,基金资助:
Jiyang TIAN1,2(),Yuanzuo ZOU1,2,Yuan PU2,Dan WANG1,2()
Received:
2020-01-14
Revised:
2020-03-26
Online:
2020-06-05
Published:
2020-06-05
Contact:
Dan WANG
摘要:
在溶剂(亚临界水)-反溶剂(去离子水)体系下,利用溶剂反溶剂沉淀耦合冷冻干燥法,对芹菜素原料药进行了纳米化及改性,制备出了超细芹菜素颗粒及其水相分散体。系统地探究了反溶剂温度、亚临界水温度、反应压力、表面活性剂种类与浓度对造粒过程产生的影响,并通过扫描电子显微镜(SEM)、红外吸收光谱(FTIR)、X射线衍射 (XRD)、质谱分析(MS)等手段对原料药和产物进行了对比分析。结果表明,当反溶剂温度为0℃,亚临界水温度为160℃、反应压力为5 MPa、表面活性剂γ-环糊精的质量分数为5%时,可得到粒径在20~30 nm范围内,分布均匀,稳定程度较高且具有较低结晶度的纳米颗粒。本文报道的芹菜素纳米颗粒制备方法,全程无有机溶剂参与,易于生物医用推广,为基于芹菜素的口服药物设计与开发提供了参考。
中图分类号:
田济阳, 邹源佐, 蒲源, 王丹. 亚临界水耦合冷冻干燥法制备芹菜素纳米分散体[J]. 化工学报, 2020, 71(6): 2768-2779.
Jiyang TIAN, Yuanzuo ZOU, Yuan PU, Dan WANG. Preparation of apigenin nanoparticles by combining subcritical water technology with freeze-drying processing[J]. CIESC Journal, 2020, 71(6): 2768-2779.
图2 亚临界水法制备芹菜素纳米颗粒实验装置1—加热套;2—高温高压反应釜;3—搅拌桨;4—过滤器;5—热电偶;6—样品收集装置;7—取样控制阀门;8—反应温度、搅拌转速、反应压力控制及检测系统;9—泄压阀门;10—压力表;11—搅拌电机;12—高精度高压泵出气控制阀门;13—高压高精度柱塞泵;14—高精度高压泵进气控制阀门;15—氮气气瓶
Fig.2 Schematic diagram of apigenin nanoparticles preparation by using SBCW method
图12 芹菜素原料药与制备的纳米颗粒红外分析对比图
Fig.12 FTIR spectra of the raw materials and apigenin nanoparticlesa—raw; b—apigenin nanoparticles; c—apigenin nanoparticles with γ-cyclooctapentylose
图13 芹菜素原料药与制备的纳米颗粒XRD谱图
Fig.13 XRD patterns of raw materials and apigenin nanoparticlesa—raw; b—apigenin nanoparticles; c—apigenin nanoparticles with γ-cyclooctapentylose
图14 芹菜素原料药与制备的纳米颗粒紫外可见吸收光谱对比图
Fig.14 UV-Vis spectra of raw materials and apigenin nanoparticlesa—raw; b—apigenin nanoparticles; c—apigenin nanoparticles with γ-cyclooctapentylose
图15 芹菜素原料药与制备的纳米颗粒质谱对比图
Fig.15 Mass spectra of raw and apigenin nanoparticlesa—raw; b—apigenin nanoparticles; c—apigenin nanoparticles with γ-cyclooctapentylose
1 | 王海娣, 刘艾林, 杜冠华. 芹菜素药理作用的研究进展[J]. 中国新药杂志, 2008, 17(18): 1561-1565. |
Wang H D, Liu A L, Du G H. New progress in the pharmacology of apigenin[J]. Chinese Journal of New Drugs, 2008, 17(18): 1561-1565. | |
2 | Yue Z, Jie Z, Ya L, et al. Natural polyphenols for prevention and treatment of cancer[J]. Nutrients, 2016, 8(8): 515-549. |
3 | Hostetler G L, Ralston R A, Schwartz S J. Flavones: food sources, bioavailability, metabolism, and bioactivity[J]. Advances in Nutrition: An International Review Journal, 2017, 8(3): 423-435. |
4 | 刘海波, 隋海霞, 支媛, 等. 芹菜素的急性毒性、遗传毒性及亚慢性毒性试验研究[J]. 中国食品卫生杂志, 2011, 23(6): 489-494. |
Liu H B, Sui H X, Zhi Y, et al. Acute toxicity, genetic toxicity and sub-chronic toxicity of apigenin[J]. Chinese Journal of Food Hygiene, 2011, 23(6): 489-494. | |
5 | Nakazawa T, Yasuda T, Ueda J, et al. Antidepressant-like effects of apigenin and 2,4,5-trimethoxycinnamic acid from Perilla frutescens in the forced swimming test[J]. Biological & Pharmaceutical Bulletin, 2003, 26(4): 474-480. |
6 | Li R P, Zhao D, Qu R, et al. The effects of apigenin on lipopolysac-charide-induced depressive-like behavior in mice[J]. Neuroscience Letters, 2015, 594: 17-22. |
7 | Wang J, Liu Y T, Xiao L, et al. Anti-inflammatory effects of apigenin in lipopolysaccharide-induced inflammatory in acute lung injury by suppressing COX-2 and NF-kB pathway[J]. Inflammation, 2014, 37(6): 2085-2090. |
8 | Basios N, Lampropoulos P, Papalois A, et al. Apigenin attenuates inflammation in experimentally induced acute pancreatitis-asso-ciated lung injury[J]. Journal of Investigative Surgery, 2015, 2: 1-7. |
9 | Ali F, Rahul, Naz F, et al. Protective effect of apigenin against N-nitrosodiethylamine (NDEA)-induced hepatotoxicity in albino rats[J]. Mutation Research-Genetic Toxicology and Environmental Mutagenesis, 2014, 767: 13-20. |
10 | Yang J, Wang X Y, Xue J, et al. Protective effect of apigenin on mouse acute liver injury induced by acetaminophen is associated with increment of hepatic glutathione reductase activity[J]. Food & Function, 2013, 4(6): 939-943. |
11 | Bao Y Y, Zhou S H, Fan J, et al. Anticancer mechanism of apigenin and the implications of GLUT-1 expression in head and neck cancers[J]. Future Oncology, 2013, 9(9): 1353-1364. |
12 | Choudhury D, Ganguli A, Dastidar D G, et al. Apigenin shows synergistic anticancer activity with curcumin by binding at different sites of tubulin[J]. Biochimie, 2013, 95(6): 1297-1309. |
13 | Lim H, Park H, Kim H P. Effects of flavonoids on senescence-associated secretory phenotype formation from bleomycin-induced senescence in BJ fibroblasts[J]. Biochemical Pharmacology, 2015, 96(4): 337-348. |
14 | An F, Cao X, Qu H, et al. Attenuation of oxidative stress of erythrocytes by the plant-derived flavonoids vitexin and apigenin[J]. Pharmazie, 2015, 70(11): 724-732. |
15 | Serajuddin A T M. Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs[J]. Journal of Pharmaceutical Sciences, 1999, 88(10): 1058-1066. |
16 | Kesisoglou F, Panmai S, Wu Y. Nanosizing - oral formulation development and biopharmaceutical evaluation[J]. Advanced Drug Delivery Reviews, 2007, 59(7): 631-644. |
17 | Ruggiero I, Terracciano M, Nicola M M, et al. Diatomite silica nanoparticles for drug delivery[J]. Nanoscale Research Letters, 2014, 9(1): 329-335. |
18 | 张海霞, 王洁欣, 乐园, 等. 液相可控沉淀技术制备纳微结构药物颗粒[J]. 化工学报, 2010, 61(7): 1720-1733. |
Zhang H X, Wang J X, Le Y, et al. Review of liquid controlled precipitation process for preparation of pharmaceutical nano- microparticles[J]. CIESC Journal, 2010, 61(7): 1720-1733. | |
19 | Jia J F, Wang W C, Gao Y H, et al. Controlled morphology and size of curcumin using ultrasound in supercritical CO2 antisolvent[J]. Ultrasonics Sonochemistry, 2015, 27: 389-394. |
20 | Sinha B, Müller R H, Möschwitzer J P. Bottom-up approaches for preparing drug nanocrystals: formulations and factors affecting particle size[J]. International Journal of Pharmaceutics, 2013, 453(1): 126-141. |
21 | Shaal L A, Shegokar R, Müller R H. Production and characterization of antioxidant apigenin nanocrystals as a novel UV skin protective formulation[J]. International Journal of Pharmaceutics, 2011, 420(1): 133-140. |
22 | Zhang J, Huang Y, Liu D, et al. Preparation of apigenin nanocrystals using supercritical antisolvent process for dissolution and bioavailability enhancement[J]. European Journal of Pharmaceutical Sciences, 2013, 48(4/5): 740-747. |
23 | Banerjee K, Banerjee S, Das S, et al. Probing the potential of apigenin liposomes in enhancing bacterial membrane perturbation and integrity loss[J]. Journal of Colloid and Interface Science, 2015, 453: 48-59. |
24 | 龙金星, 郭斌, 王芙蓉, 等. 亚临界水中离子液体催化蔗渣液化残渣分析[J]. 化工学报, 2012, 63(8): 2425-2430. |
Long J X, Guo B, Wang F R, et al. Analysis of residue from catalytic liquefaction of bagasse with acidic ionic liquid in subcritical water[J]. CIESC Journal, 2012, 63(8): 2425-2430. | |
25 | Carr A G, Mammucari R, Foster N R. Solubility and micronization of griseofulvin in subcritical water[J]. Industrial & Engineering Chemistry Research, 2010, 49(7): 3403-3410. |
26 | 伍正祥, 陈小媛, 翟晶, 等. 亚临界水法制备醋酸甲地孕酮超细颗粒[J]. 北京化工大学学报(自然科学版), 2013, 40: 10-14. |
Wu Z X, Chen X Y, Zhai J, et al. Ultrafine megestrol acetate particles prepared by subcritical water method[J]. Journal of Beijing University of Chemical Tcchnology (Natural Science Edition), 2013, 40: 10-14. | |
27 | Pu Y, Wen X, Li Y, et al. Ultrafine clarithromycin nanoparticles via anti-solvent precipitation in subcritical water: effect of operating parameters[J]. Powder Technology, 2017, 305: 125-131. |
28 | Chen X Y, Shang Y L, Li Y H, et al. Green preparation of uniform prednisolone nanoparticles using subcritical water[J]. Chemical Engineering Journal, 2015, 263: 20-26. |
29 | Pu Y, Li Y, Wang D, et al. A green route to beclomethasone dipropionate nanoparticles via solvent anti-solvent precipitation by using subcritical water as the solvent[J]. Powder Technology, 2017, 308: 200-205. |
30 | 蔡建国, 邓修. 超临界CO2沉析HMX过程中过饱和度与颗粒尺寸的关系[J]. 华东理工大学学报(自然科学版), 2005, 31(1): 15-18. |
Cai J G, Deng X. Supersaturation ratio and particle size of HMX using supercritical CO2[J]. Journal of East China University of Science and Technology, 2005, 31(1): 15-18. | |
31 | 华东东, 李鹤然, 杨白雪, 等. 药用辅料接触角的测定及表面活性剂对辅料润湿性的调节作用[J]. 药学学报, 2015, 50(10): 1342-1345. |
Hua D D, Li H R, Yang B X, et al. Determination of contact angle of pharmaceutical excipients and regulating effect of surfactants on their wettability[J]. Acta Pharmaceutica Sinica, 2015, 50(10): 1342-1345. | |
32 | 周雅文, 刘静伟, 赵莉, 等. 表面活性剂的性能与应用(Ⅸ)——表面活性剂的增溶作用及其应用[J]. 日用化学工业, 2014, 44(9): 486-489. |
Zhou Y W, Liu J W, Zhao L, et al. Performance and applications of surfactants (Ⅸ) Solubilization function of surfactants and applications[J]. China Surfactant Detergent & Cosmetics, 2014, 44(9): 486-489. | |
33 | 赵成英, 王利民. 表面活性剂在制药工业中的应用[J]. 日用化学工业, 2007, 37(6): 389-392, 400. |
Zhao C Y, Wang L M. Application of surfactants in pharmaceutical manufacture[J]. China Surfactant Detergent & Cosmetics, 2007, 37(6): 389-392, 400. | |
34 | 李进霞, 于肯明, 张慧芝, 等. 芹菜素-环糊精包合物在溶液中的制备、表征及抗氧化性[J]. 山西大同大学学报(自然科学版), 2015, 31(6): 43-46. |
Li J X, Yu K M, Zhang H Z, et al. Preparation, characterization and antioxidant activity of the inclusion complex of apigenin with β-cyclodextrin and HP-β-cyclodextrin in solution[J]. Journal of Shanxi Datong University, 2015, 31(6): 43-46. | |
35 | 陈平, 韩俊杰, 刘涛, 等. 水溶性芹菜素的合成[J]. 食品科学, 2009, 30(18): 67-70. |
Chen P, Han J J, Liu T, et al. Synthesis of water-soluble apigenin[J]. Food Science, 2009, 30(18): 67-70. | |
36 | Wu W, Zu Y, Wang L, et al. Preparation, characterization and antitumor activity evaluation of apigenin nanoparticles by the liquid antisolvent precipitation technique[J]. Drug Delivery, 2017, 24(1): 1713-1720. |
37 | Gurunath S, Kumar S P, Basavaraj N K, et al. Amorphous solid dispersion method for improving oral bioavailability of poorly water-soluble drugs[J]. Journal of Pharmacy Research, 2013, 6(4): 476-480. |
38 | Kesisoglou F, Panmai S, Wu Y. Nanosizing - oral formulation development and biopharmaceutical evaluation[J]. Advanced Drug Delivery Reviews, 2007, 59(7): 631-644. |
[1] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
[2] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[3] | 陈巨辉, 张谦, 舒崚峰, 李丹, 徐鑫, 刘晓刚, 赵晨希, 曹希峰. 基于DEM方法的旋转流化床纳米颗粒流动特性研究[J]. 化工学报, 2023, 74(6): 2374-2381. |
[4] | 艾承燚, 乔金硕, 王振华, 孙旺, 孙克宁. 原位析出纳米合金的PrBaFe2O6-δ 基阳极构筑及其在固体碳燃料电池中的应用研究[J]. 化工学报, 2022, 73(8): 3708-3719. |
[5] | 童海航, 石德智, 刘嘉宇, 蔡桦伊, 罗丹, 陈飞. 金属纳米颗粒辅助木质纤维素暗发酵生物制氢的研究进展[J]. 化工学报, 2022, 73(4): 1417-1435. |
[6] | 费滢洁, 朱春英, 付涛涛, 高习群, 马友光. Y型微通道内纳米颗粒稳定气泡的完全阻塞破裂动力学[J]. 化工学报, 2022, 73(1): 213-221. |
[7] | 高文莉, 辛忠. Fe对Ni/SBA-16催化CO低温甲烷化促进作用的研究[J]. 化工学报, 2022, 73(1): 241-254. |
[8] | 张瑞, 钟静, 林森, 于建国. 盐湖铝系提锂吸附剂成型条件的影响研究[J]. 化工学报, 2021, 72(12): 6291-6297. |
[9] | 乔国岳, 刘居陶, 孙剑飞, 徐琴琴, 银建中. 超临界CO2脱附作用调控负载纳米颗粒结晶动力学研究[J]. 化工学报, 2021, 72(11): 5849-5857. |
[10] | 韩超灵, 陈振乾. 添加碳纳米颗粒对磷氮双掺杂石墨烯电化学特性的影响[J]. 化工学报, 2020, 71(S1): 448-453. |
[11] | 陈海涛, 乔金硕, 王振华, 孙旺, 李海军, 孙克宁. 原位双金属纳米颗粒YST复合阳极的构筑及其直接碳催化性能研究[J]. 化工学报, 2020, 71(9): 4270-4281. |
[12] | 段云彪, 徐存英, 王祥, 刘海, 黄梦婷. 反溶剂沉淀法合成Fe3+掺杂ZnO纳米结构及其可见光催化性能[J]. 化工学报, 2019, 70(3): 1198-1207. |
[13] | 吕惠生, 张佳, 李永辉, 耿中峰, 王智, 吕春柳, 石兴方. 有机酸对甜高粱渣亚临界水解产物的影响[J]. 化工学报, 2018, 69(9): 4058-4065. |
[14] | 曲洋, 初茉, 朱书全, 张超, 郝成亮, 徐芳. 回转窑内利用液化残渣共热褐煤以抑制其粉化的影响因素分析[J]. 化工学报, 2018, 69(5): 2166-2174. |
[15] | 熊亚选, 王振宇, 徐鹏, 吴玉庭, 丁玉龙, 马重芳. 添加纳米MgO和SiO2颗粒对二元碳酸盐(Li2CO3-K2CO3)比热容的影响[J]. 化工学报, 2018, 69(12): 4959-4965. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||