化工学报 ›› 2020, Vol. 71 ›› Issue (6): 2780-2787.DOI: 10.11949/0438-1157.20191416
收稿日期:
2019-11-25
修回日期:
2020-02-22
出版日期:
2020-06-05
发布日期:
2020-06-05
通讯作者:
许晖
作者简介:
杨金曼(1994—),女,博士研究生,基金资助:
Jinman YANG(),Xingwang ZHU,Guli ZHOU,Hui XU(),Huaming LI
Received:
2019-11-25
Revised:
2020-02-22
Online:
2020-06-05
Published:
2020-06-05
Contact:
Hui XU
摘要:
光催化二氧化碳转化技术,不仅可以利用取之不尽用之不竭的太阳光能,而且可将二氧化碳转化为高附加值的碳基燃料,受到研究者们的广泛关注。实验设计合成了新颖的中空结构的Co3O4/CdIn2S4异质结光催化剂。两种半导体的高效耦合作用极大地促进了光生载流子分离,同时形成更多暴露活性位点。基于异质结独特的结构优势,表现出高效的CO2还原性能,5% Co3O4/CdIn2S4 的CO生成速率达74 μmol·g-1·h-1,与单体CdIn2S4相比,不仅活性得到很大提升,同时CO选择性达到100%。
中图分类号:
杨金曼, 朱兴旺, 周固礼, 许晖, 李华明. MOFs诱导中空Co3O4/CdIn2S4合成及光催化CO2还原性能研究[J]. 化工学报, 2020, 71(6): 2780-2787.
Jinman YANG, Xingwang ZHU, Guli ZHOU, Hui XU, Huaming LI. Preparation of MOFs-derived hollow Co3O4/CdIn2S4 heterojunction with enhanced photocatalytic carbon dioxide reduction activity[J]. CIESC Journal, 2020, 71(6): 2780-2787.
1 | Wu J, Li X D, Shi W, et al. Efficient visible-light-driven CO2 reduction mediated by defect-engineered BiOBr atomic layers[J]. Angew. Chem. Int. Ed., 2018, 57: 8719-8723. |
2 | 张甄, 王宝冬, 赵兴雷, 等. 光电催化二氧化碳能源化利用研究进展[J]. 化工进展, 2019, 38(9): 3927-3935. |
Zhang Z, Wang B D, Zhao X L, et al. Research progress of energy utilization of CO2 by photoelectrocatalysis[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 3927-3935. | |
3 | Liu X, Inagaki S, Gong J L. Heterogeneous molecular systems for photocatalytic CO2 reduction with water oxidation[J]. Angew. Chem. Int. Ed., 2016, 55: 14924-14950. |
4 | Li X, Yu J G, Jaroniec M, et al. Cocatalysts for selective photoreduction of CO2 into solar fuels[J]. Chem. Rev., 2019, 119: 3962-4179. |
5 | Qamar S, Lei F C, Liang L, et al. Ultrathin TiO2 flakes optimizing solar light driven CO2 reduction[J]. Nano Energy, 2016, 26: 692-698. |
6 | 何志桥, 林海燕, 陈建孟, 等. Ag3PO4形貌和晶面对Ag/Ag3PO4等离子体催化剂光催化还原CO2的影响[J]. 化工学报, 2015, 66(12): 4850-4857. |
He Z Q, Lin H Y, Chen J M, et al. Effect of morphology and exposed facets of Ag3PO4 on photocatalytic reduction of CO2 to CH3OH over Ag/Ag3PO4 plasmonic photocatalysts[J]. CIESC Journal, 2015, 66(12): 4850-4857. | |
7 | Deng X, Li R, Wu S K, et al. Metal-organic framework coating enhances the performance of Cu2O in photoelectrochemical CO2 reduction[J]. J. Am. Chem. Soc., 2019, 141(27): 10924-10929. |
8 | Chansol K, Min C K, Ahmed A S, et al. Z-scheme photocatalytic CO2 conversion on three-dimensional BiVO4/carbon-coated Cu2O nanowire arrays under visible light[J]. ACS Catal., 2018, 8: 4170-4177. |
9 | Wang S B, Guan B Y, Wang X, et al. Formation of hierarchical Co9S8@ZnIn2S4 heterostructured cages as an efficient photocatalyst for hydrogen evolution[J]. J. Am. Chem. Soc., 2018, 140(45): 15145-15148. |
10 | Wang S B, Guan B Y, Lu Y, et al. Formation of hierarchical In2S3-CdIn2S4 heterostructured nanotubes for efficient and stable visible light CO2 reduction[J]. J. Am. Chem. Soc., 2017, 139: 17305-17308. |
11 | An H Q, Li M, Liu R D, et al. Design of AgxAu1-x alloy/ZnIn2S4 system with tunable spectral response and schottky barrier height for visible-light-driven hydrogen evolution[J]. Chem. Eng. J., 2019, 122953. |
12 | Xue C, An H, Yan X Q, et al. Spatial charge separation and transfer in ultrathin CdIn2S4 /rGO nanosheet arrays decorated by ZnS quantum dots for efficient visible-light-driven hydrogen evolution[J]. Nano Energy, 2017, 39: 513-523. |
13 | Zhang N, Gao C M, Xiong Y J. Defect engineering: a versatile tool for tuning the activation of key molecules in photocatalytic reactions[J]. J. Energy Chem., 2019, 37: 43-57. |
14 | Xu H, She X J, Fei T, et al. Metal-oxide-mediated subtractive manufacturing of two-dimensional carbon nitride for high-efficiency and high-yield photocatalytic H2 evolution[J]. ACS Nano, 2019, 13: 11294-11302. |
15 | Zhu X W, Huang S Q, Yu Q, et al. In-situ hydroxyl modification of monolayer black phosphorus for stable photocatalytic carbon dioxide conversion[J]. Appl. Catal. B: Environ., 2020, 118760. |
16 | Yuan X Z, Jiang L B, Liang J, et al. In-situ synthesis of 3D microsphere-like In2S3/InVO4 heterojunction with efficient photocatalytic activity for tetracycline degradation under visible light irradiation[J]. Chem. Eng. J., 2019, 356: 371-381. |
17 | 何志桥, 陈锦萍, 童丽丽, 等. BiOCl/g-C3N4异质结催化剂可见光催化还原CO2[J]. 化工学报, 2016, 67(11): 4634-4641. |
He Z Q, Chen J P, Tong L L, et al. BiOCl/g-C3N4 heterojunction catalyst for efficient photocatalytic reduction of CO2 under visible light[J]. CIESC Journal, 2016, 67(11): 4634-4641. | |
18 | Dong K, He J, Liu J, et al. Photocatalytic performance of Cu2O-loaded TiO2/rGO nanoheterojunctions obtained by UV reduction[J]. J. Mater. Sci., 2017, 52: 6754-6766. |
19 | 黄刚, 陈玉贞, 江海龙. 金属有机骨架材料在催化中的应用[J]. 化学学报, 2016, 74: 113-129. |
Huang G, Chen Y Z, Jiang H L. Metal-organic frameworks for catalysis[J]. Acta Chim. Sinica, 2016, 74: 113-129. | |
20 | Xu H Q, Hu J H, Wang D K, et al. Visible-light photoreduction of CO2 in a metal-organic framework: boosting electron-hole separation via electron trap states[J]. J. Am. Chem. Soc., 2015, 137: 13440-13443. |
21 | Xu H Q, Wang K, Ding M, et al. Seed-mediated synthesis of metal-organic frameworks[J]. J. Am. Chem. Soc., 2016, 138: 5316-5320. |
22 | Yang J, Zhang F J, Lu H Y, et al. Hollow Zn/Co ZIF particles derived from core-shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene[J]. Angew. Chem. Int. Ed., 2015, 54: 10889-10893. |
23 | Yang J M, Zhu X W, Mo Z, et al. A multidimensional In2S3–CuInS2 heterostructure for photocatalytic carbon dioxide reduction[J]. Inorg. Chem. Front., 2018, 5: 3163-3169. |
24 | Li Z H, Yu C C, Wen Y Y, et al. Mesoporous hollow Cu–Ni alloy nanocage from core–shell Cu@Ni nanocube for efficient hydrogen evolution reaction[J]. ACS Catal., 2019, 9: 5084-5095. |
25 | Xiao M, Wang Z L, Lyu M Q, et al. Hollow nanostructures for photocatalysis: advantages and challenges[J]. Adv. Mater., 2018, 30: 1801369. |
26 | Ling C C, Ye X J, Zhang J H, et al. Solvothermal synthesis of CdIn2S4 photocatalyst for selective photosynthesis of organic aromatic compounds under visible light[J]. Sci. Rep., 2017, 7: 1-16. |
27 | Zhang J H, Li F, Chen W B, et al. Facile synthesis of hollow Co3O4-embedded carbon/reduced graphene oxides nanocomposites for use as efficient electrocatalysts in oxygen evolution reaction[J]. Electrochim. Acta, 2019, 300: 123-130. |
28 | Pan Y T, Li D D, Jiang H L, Sodium-doped C3N4/MOF heterojunction composites with tunable band structures for photocatalysis: interplay between light harvesting and electron transfer[J]. Chem. Eur. J., 2018, 24: 18403-18407. |
29 | Cui X F, Wang J, Liu B, et al. Turning Au nanoclusters catalytically active for visible-light-driven CO2 reduction through bridging ligands[J]. J. Am. Chem. Soc., 2018, 140: 16514-16520. |
30 | She X J, Xu H, Li L, et al. Steering charge transfer for boosting photocatalytic H2 evolution: integration of two-dimensional semiconductor superiorities and noble-metal-free Schottky junction effect[J]. Appl. Catal. B: Environ., 2019, 245: 477-485. |
31 | Zhu X W, Ji H Y, Yi J J, et al. A specifically exposed cobalt oxide/carbon nitride 2D heterostructure for carbon dioxide photoreduction[J]. Ind. Eng. Chem. Rev., 2018, 57: 17394-17400. |
[1] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
[2] | 肖川宝, 李林洋, 刘武锋, 钟年丙, 解泉华, 钟登杰, 常海星. 光催化与离子交换吸附耦合有效去除2,4,6-三氯苯酚[J]. 化工学报, 2023, 74(4): 1587-1597. |
[3] | 徐银, 蔡洁, 陈露, 彭宇, 刘夫珍, 张晖. 异相可见光催化耦合过硫酸盐活化技术在水污染控制中的研究进展[J]. 化工学报, 2023, 74(3): 995-1009. |
[4] | 王峰, 张顺鑫, 余方博, 刘亚, 郭烈锦. 光催化CO2还原制碳氢燃料系统优化策略研究[J]. 化工学报, 2023, 74(1): 29-44. |
[5] | 彭琳, 牛明鑫, 白羽, 孙克宁. 中空硫球-MoS2/rGO材料的制备及其在锂硫电池中的应用[J]. 化工学报, 2022, 73(8): 3688-3698. |
[6] | 张劢, 田瑶, 郭之旗, 王叶, 窦广进, 宋浩. 光催化-生物杂合系统设计优化用于燃料和化学品绿色合成[J]. 化工学报, 2022, 73(7): 2774-2789. |
[7] | 王旭, 张乐瑶, 张昊轩, 演嘉辉, 吴玉帅, 吴冬, 陈汇勇, 马晓迅. 中空孔结构对W掺杂MFI分子筛丙酮吸附行为的研究[J]. 化工学报, 2022, 73(3): 1194-1206. |
[8] | 王淋, 付乾, 肖帅, 李卓, 李俊, 张亮, 朱恂, 廖强. 高效可见光响应微生物/光电化学耦合人工光合作用系统[J]. 化工学报, 2022, 73(2): 887-893. |
[9] | 陈晨, 王明明, 王志刚, 谭小耀. 镍基非对称中空纤维膜用于乙醇自热重整制氢[J]. 化工学报, 2021, 72(S1): 482-493. |
[10] | 戴晓业, 安青松, 许云婷, 史琳. 废弃制冷剂降解方法研究现状及思考[J]. 化工学报, 2021, 72(S1): 1-6. |
[11] | 赵林洲, 郑燕娥, 李孔斋, 王亚明, 蒋丽红, 范浩熙, 王雅静, 祝星, 魏永刚. Ce1-xNixOy氧载体在化学链甲烷重整耦合CO2还原中的应用[J]. 化工学报, 2021, 72(8): 4371-4380. |
[12] | 谢钦崟, 黄晓连, 李元, 李玲, 葛雪惠, 邱挺. TiO2平板微反应器设计优化及光催化性能研究[J]. 化工学报, 2021, 72(7): 3626-3636. |
[13] | 牛晓坡, 徐爽, 李晓雪, 冯富祥, 王庆法. 中空Pt/ZSM-5催化剂用于愈创木酚加氢脱氧合成环烷烃[J]. 化工学报, 2021, 72(5): 2616-2625. |
[14] | 党永强,李博妮,李可可,张建兰,冯香钰,张亚婷. 铁基催化剂光催化还原CO2研究进展[J]. 化工学报, 2021, 72(10): 5016-5027. |
[15] | 张顾平, 王贝贝, 周舟, 陈冬赟, 路建美. 半导体材料在光催化低浓度氮氧化物的研究进展[J]. 化工学报, 2021, 72(1): 259-275. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||