1 |
Robert F S. Hydrogen cars: fad or the future?[J]. Science, 2009, 324: 1257-1259.
|
2 |
Schoedel L, Ji Z, Yaghi O M. The role of metal-organic frameworks in a carbon-neutral energy cycle[J]. Nat. Energy, 2016, 1(4): 16034
|
3 |
毛宗强. 氢能——我国未来的清洁能源[J]. 化工学报, 2004, 55(1): 662-665.
|
|
Mao Z Q. Hydrogen energy: the future clean energy in China[J]. Journal of Chemical Industry and Engineering(China), 2004, 55(1): 662-665.
|
4 |
Lu W, Liu T, Xie L, et al. In situ derived Co-B nanoarray: a high-efficiency and durable 3D bifunctional electrocatalyst for overall alkaline water splitting[J]. Small, 2017, 13(32): 1700805.
|
5 |
Walter M G, Warren E L, Mckone J R, et al. Solar water splitting cells[J]. Chem. Rev., 2010, 110: 6446-6473.
|
6 |
Kim D, Sakimoto K K, Hong D, et al. Artificial photosynthesis for sustainable fuel and chemical production[J]. Angew. Chem. Int. Ed., 2015, 54: 3259-3266.
|
7 |
Yu B B, Wu W Q, Jin J V, et al. Facile synthesis of Co-based selenides for oxygen reduction reaction in acidic medium[J]. Int. J. Hydrogen Energ., 2016, 41: 8863-8870.
|
8 |
Liu Y W, Hua X M, Xiao C, et al. Heterogeneous spin states in ultrathin nanosheets induce subtle lattice distortion to trigger efficient hydrogen evolution[J]. J. Am. Chem. Soc., 2016, 138: 5087-5092.
|
9 |
Furukawa H, Ko N, Go Y B, et al. Ultrahigh porosity in metal-organic frameworks[J]. Science, 2010, 329: 424-428.
|
10 |
Hu H, Guan B Y, Xia B Y, et al. Designed formation of Co3O4/NiCo2O4 double-Shelled nanocages with enhanced pseudocapacitive and electrocatalytic properties[J]. J. Am. Chem. Soc., 2015, 137(16): 5590-5595.
|
11 |
Dong D, Liu Y, Li J H. Co3O4 hollow polyhedrons as bifunctional electrocatalysts for reduction and evolution reactions of oxygen[J]. Part. Part. Syst. Charact., 2016, 33(12): 887-895.
|
12 |
Qian H, Tang J, Wang Z, et al. Synthesis of cobalt sulfide/sulfur doped carbon nanocomposites with efficient catalytic activity in the oxygen evolution reaction[J]. Chem-Eur. J., 2016, 22(50): 18259-18264.
|
13 |
Long J Y, Gong Y, Lin J H. Metal-organic framework-derived Co9S8@CoS@CoO@C nanoparticles as efficient electro- and photo-catalysts for the oxygen evolution reaction[J]. J. Mater. Chem. A, 2017, 5: 10495-10509.
|
14 |
Zhang Z, Hao J, Yang W, et al. Defect-rich CoP/nitrogen-doped carbon composites derived from a metal–organic framework: high-performance electrocatalysts for the hydrogen evolution reaction[J]. Chem. Cat. Chem., 2015, 7(13): 1920-1925.
|
15 |
Li H, Ke F, Zhu J F. MOF-derived ultrathin cobalt phosphide nanosheets as efficient bifunctional hydrogen evolution reaction and oxygen evolution reaction electrocatalysts[J]. Nanomaterials, 2018, 8(2): 89-100.
|
16 |
水恒心, 潘冯弘康, 金田, 等. 双功能 yolk-shell 钴@钴氮碳掺杂氧电极催化剂[J]. 化工学报, 2018, 69(11): 4702-4712.
|
|
Shui H X, Panfeng H K, Jin T, et al. York-shell Co@Co-N/C of bifunctional oxygen electrocatalysts[J]. CIESC Journal, 2018, 69(11): 4702-4712.
|
17 |
Wu R, Wang D P, Rui X, et al. In-situ formation of hollow hybrids composed of cobalt sulfides embedded within porous carbon polyhedra/carbon nanotubes for high-performance lithium-ion batteries[J]. Adv. Mater., 2015, 27(19): 3038-3044.
|
18 |
Torad N L, Salunkhe R R, Li Y, et al. Electric double-layer capacitors based on highly graphitized nanoporous carbons derived from ZIF-67[J]. Chemistry, 2014, 20(26): 7895-900.
|
19 |
Li Y Q, Xu H B, Huang H Y, et al. Synthesis of Co-B in porous carbon using a metal–organic framework (MOF) precursor: a highly efficient catalyst for the oxygen evolution reaction[J]. Electrochem. Commun., 2018, 86: 140-144.
|
20 |
Hao Y C, Xu Y Q, Liu J F, et al. Nickel-cobalt oxides supported on Co/N decorated graphene as an excellent bifunctional oxygen catalyst[J]. J. Mater. Chem. A, 2017, 5: 5594-5600.
|
21 |
Wang S G, Qin J W, Meng T, et al. Metal-organic framework-induced construction of actiniae-like carbon nanotube assembly as advanced multifunctional electrocatalysts for overall water splitting and Zn-air batteries[J]. Nano Energy, 2017, 39: 626-638.
|
22 |
Chen B, Li R, Ma G, et al. Cobalt sulfide/N,S codoped porous carbon core-shell nanocomposites as superior bifunctional electrocatalysts for oxygen reduction and evolution reactions[J]. Nanoscale, 2015, 7(48): 20674-20684.
|
23 |
You B, Jiang N, Sheng M L, et al. High-performance overall water splitting electrocatalysts derived from cobalt-based metal-organic frameworks[J]. Chem. Mater., 2015, 27(22): 7636-7642.
|
24 |
Xu K, Chen P, Li X, et al. Metallic nickel nitride nanosheets realizing enhanced electrochemical water oxidation[J]. J. Am. Chem. Soc., 2015, 137: 4119-4125.
|
25 |
Wang Y, Zhou T, Jiang K. et al. Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes[J]. Adv. Energy. Mater., 2014, 4: 1400696.
|
26 |
Chen P, Xu K, Fang Z, et al. Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction[J]. Angew. Chem. Int. Ed., 2015, 54: 14710-14714.
|
27 |
Diby N D, Duan Y Q, Grah P A, et al. Enhanced photoelectrochemical performance for hydrogen generation via introducing Ti3+ and oxygen vacancies into TiO2 nanorod arrays[J]. J. Mater. Sci-Mater. El., 2018, 29(23): 20236-20246.
|
28 |
Qin D D, Wang T, Song Y M, et al. Reduced monoclinic BiVO4 for improved photoelectrochemical oxidation of water under visible light[J]. Dalton. T., 2014, 43(21): 7691-7694.
|
29 |
Zhang W, Jiang X F, Wang X B, et al. Spontaneous weaving of graphitic carbon networks synthesized by pyrolysis of ZIF-67 crystals[J]. Angew. Chem. Int. Ed., 2017, 56: 8435-8440.
|
30 |
Xu G, Xu G C, Ban J J, et al. Cobalt and cobalt oxides N-codoped porous carbon derived from metal organic framework as bifunctional catalyst for oxygen reduction and oxygen evolution reactions[J]. J. Colloid Interf. Sci., 2018, 521: 141-149.
|
31 |
Liu S J, Deng T, Hu X Y, et al. Increasing surface active Co2+ sites of MOF-derived Co3O4 for enhanced supercapacitive performance via NaBH4 reduction[J]. Electrochim. Acta, 2018, 289: 319-323.
|
32 |
Li J G, Xie K F, Sun H C, et al. Template-directed bifunctional dodecahedral CoP/CN@MoS2 electrocatalyst for high efficient water splitting[J]. ACS Appl. Mater. Interfaces, 2019, 11: 36649-36657.
|
33 |
Tian L L, He G G, Cai Y H, et al. Co3O4 based nonenzymatic glucose sensor with high sensitivity and reliable stability derived from hollow hierarchical architecture[J]. Nanotechnology, 2018, 29(7): 1-11.
|
34 |
Wei R J, Fang M, Dong G F, et al. High-index faceted porous Co3O4 nanosheets with oxygen vacancies for highly efficient water oxidation[J]. ACS Appl. Mater. Interfaces, 2018, 10: 7079-7086.
|
35 |
Liang Z Z, Zhang C C, Yuan H T, et al. PVP-assisted transformation of metal-organic framework into Co-embedded N-enriched meso/microporous carbon materials as bifunctional electrocatalysts[J]. Chem. Commun., 2018, 54: 7519-7522.
|