化工学报 ›› 2020, Vol. 71 ›› Issue (S2): 118-126.DOI: 10.11949/0438-1157.20200490
王志国1(),冯艳1,杨文哲2(),张聪慧3,李栋1,刘立君1
收稿日期:
2020-05-06
修回日期:
2020-05-14
出版日期:
2020-11-06
发布日期:
2020-11-06
通讯作者:
杨文哲
作者简介:
王志国(1966—),男,博士,教授,基金资助:
Zhiguo WANG1(),Yan FENG1,Wenzhe YANG2(),Conghui ZHANG3,Dong LI1,Lijun LIU1
Received:
2020-05-06
Revised:
2020-05-14
Online:
2020-11-06
Published:
2020-11-06
Contact:
Wenzhe YANG
摘要:
多孔介质内部组成结构复杂,热质传递过程多变,如何针对多孔介质的微观孔隙分布特性,建立更加精准的分析模型,有待深入研究。基于表征单元体(representative elementary volume,REV)概念,提出了孔隙型多孔介质的两种微观物理模型,即空心骨架基元模型和实心颗粒基元模型,分别建立了相应的热导率计算公式。针对孔隙内的微观结构特征,采用分形方法,对两种基元模型进行了分形修正,更好地表征了微观孔隙结构。基于所建模型,进行了模拟计算,探讨了相关参数对多孔介质导热特性的影响。通过自主研发的实验装置进行了相关实验,验证了模型的准确性。
中图分类号:
王志国, 冯艳, 杨文哲, 张聪慧, 李栋, 刘立君. 基于REV的孔隙型多孔介质导热分析模型[J]. 化工学报, 2020, 71(S2): 118-126.
Zhiguo WANG, Yan FENG, Wenzhe YANG, Conghui ZHANG, Dong LI, Lijun LIU. Thermal conductivity analysis model of porous media based on REV[J]. CIESC Journal, 2020, 71(S2): 118-126.
项目 | 测试结果 | 空心骨架基元模型 | 实心颗粒基元模型 | 空心骨架分形模型 | 实心颗粒分形模型 |
---|---|---|---|---|---|
数据/(W/(m·K)) | 0.0451 | 0.0412 | 0.0410 | 0.0466 | 0.0467 |
相对偏差/% | -8.65 | -9.09 | 3.33 | 3.55 |
表1 实验测试与模型对比
Table 1 Experimental test and model comparison
项目 | 测试结果 | 空心骨架基元模型 | 实心颗粒基元模型 | 空心骨架分形模型 | 实心颗粒分形模型 |
---|---|---|---|---|---|
数据/(W/(m·K)) | 0.0451 | 0.0412 | 0.0410 | 0.0466 | 0.0467 |
相对偏差/% | -8.65 | -9.09 | 3.33 | 3.55 |
1 | 张卫红, 孙士平. 多孔材料/结构尺度关联的一体化拓扑优化技术[J]. 力学学报, 2006, 38(4): 522-529. |
Zhang W H, Sun S P. Integrated topology optimization technique for the scale correlation of porous materials/structures [J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(4): 522-529. | |
2 | 孔凡红. 多层多孔介质层间界面处的热质耦合传递[J]. 太阳能学报, 2010, 31(10): 1281-1286. |
Kong F H. Thermal-mass coupling transfer at interlayer interface of multi-layer porous media [J]. Journal of Solar Energy, 2010, 31(10): 1281-1286. | |
3 | 付毕安. 微波场中典型电/磁损耗含湿矿物类多孔介质内部耦合传输机制研究[D]. 北京: 北京交通大学, 2019. |
Fu B A. Study on the internal coupling transport mechanism of wet-containing mineral porous media with typical electrical/magnetic losses in microwave field [D]. Beijing: Beijing Jiaotong University, 2019. | |
4 | Yu M, Liu D, de Dieu Bazimenyera J. Diagnostic complexity of regional groundwater resources system based on time series fractal dimension and artificial fish swarm algorithm [J]. Water Resources Management, 2013, 27(7): 1897-1911. |
5 | 蒋金海, 李琦, 陈艳, 等. 镍渣制备轻质镁橄榄石-尖晶石闭孔泡沫陶瓷及分形表征[J]. 中国陶瓷, 2018, 54(7): 47-52. |
Jiang J H, Li Q, Chen Y, et al. Preparation of lightweight magnesium olivine-spinel closed-cell foam ceramics from nickel slag and fractal characterization [J]. China Ceramics, 2018, 54(7): 47-52. | |
6 | You L J, Tan Q G, Kang Y L, et al. Optimizing the particle size distribution of drill-in fluids based on fractal characteristics of porous media and solid particles [J]. Journal of Petroleum Science and Engineering, 2018, 171: 1223-1231 |
7 | 王超, 刘斌, 黄国锋, 等. 蒜薹冰温贮藏期的细胞分形结构变化分析[J]. 冷藏技术, 2018, 41(3): 15-20. |
Wang C, Liu B, Huang G F, et al. Analysis of cell fractal structure changes during freezing temperature storage of garlic bulbs [J]. Cold Storage Technology, 2018, 41(3): 15-20. | |
8 | 顾思忠, 刘斌, 杨兆丹. 胡萝卜在微波干燥条件下的热物理性质和多孔特性[J]. 江苏农业学报, 2018, 34(4): 897-903. |
Gu S Z, Liu B, Yang Z D. Thermophysical properties and porous properties of carrot under microwave drying [J]. Jiangsu Journal of Agricultural Sciences, 2018, 34(4): 897-903. | |
9 | 叶加兵, 张家发, 邹维列. 颗粒形状对碎石料孔隙特性影响研究[J]. 岩土力学, 2018, 39(12): 4457-4467. |
Ye J B, Zhang J F, Zou W L. Effect of particle shape on pore characteristics of crushed rock [J]. Rock and Soil Mechanics, 2018, 39(12): 4457-4467. | |
10 | Cai J C, Yu B M. A discussion of the effect of tortuosity on the capillary imbibition in porous media [J]. Transport in Porous Media, 2011, 89(2): 251-263. |
11 | 张济中. 分形[M]. 北京: 清华大学出版社, 1995. |
Zhang J Z. Fractal [M]. Beijing: Tsinghua University Press, 1995. | |
12 | Yu B M, Cheng P. Fractal models for the effective thermal conductivity of bidispersed porous media [J]. Journal of Thermophysics and Heat Transfer, 2002, 16(1): 22-29. |
13 | Feng Y J, Yu B M, Zou M Q, et al. A generalized model for the effective thermal conductivity of porous media based on self-similarity [J]. Journal of Physics D: Applied Physics, 2004, 37(21): 3030-3040. |
14 | 徐国稳, 李坤, 蒋祎璠, 等. 三类随机分形结构下干土壤有效热导率的介观研究[J]. 化工学报, 2019, 70(7): 2496-2502. |
Xu G W, Li K, Jiang Y F, et al. Mesometrical study on effective thermal conductivity of dry soil under three types of random fractal structures [J]. CIESC Journal, 2019, 70(7): 2496-2502. | |
15 | 王唯威, 淮秀兰. 分形多孔介质导热数值模拟分析[J]. 工程热物理学报, 2007, 28(5): 835-837. |
Wang W W, Huai X L. Numerical simulation analysis of thermal conductivity of fractal porous media [J]. Journal of Engineering Thermophysics, 2007, 28(5): 835-837. | |
16 | 孙见君, 嵇正波, 马晨波. 粗糙表面接触力学问题的重新分析[J]. 力学学报, 2018, 50(1): 68-77. |
Sun J J, Ji Z B, Ma C B. Reanalysis of contact mechanics of rough surface [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 68-77. | |
17 | 陈世江, 朱万成, 王创业, 等. 岩体结构面粗糙度系数定量表征研究进展[J]. 力学学报, 2017, 49(2): 239-256. |
Chen S J, Zhu W C, Wang C Y, et al. Progress in quantitative characterization of rock mass structural surface roughness coefficient [J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 239-256. | |
18 | 马强, 陈俊, 陈振乾. 分形多孔介质传热传质过程的格子Boltzmann模拟[J]. 化工学报, 2014, 65(1): 180-186. |
Ma Q, Chen J, Chen Z Q. Lattice Boltzmann simulation of heat and mass transfer in fractal porous media [J]. CIESC Journal, 2014, 65(1): 180-186. | |
19 | 王志国, 张聪慧, 贾永英, 等. 基于多尺度量纲统一原则的油藏孔隙分形输运特性研究[J]. 工程热物理学报, 2017, 38(10): 2235-2241. |
Wang Z G, Zhang C H, Jia Y Y, et al. Study on the fractal transport characteristics of reservoir pore based on the principle of multi dimension unity [J]. Journal of Engineering Thermophysics, 2017, 38(10): 2235-2241. | |
20 | 赵韩, 陈奇, 黄康. 两圆柱体结合面的法向接触刚度分形模型[J]. 机械工程学报, 2011, 47(7): 53-58. |
Zhao H, Chen Q, Huang K. Fractal model of normal contact stiffness of two cylindrical joint surfaces [J]. Journal of Mechanical Engineering, 2011, 47(7): 53-58. | |
21 | 郁伯铭, 徐鹏, 邹明清, 等. 分形多孔介质输运物理[M]. 北京: 科学出版社, 2014. |
Yu B M, Xu P, Zou M Q, et al. Transport Physics of Fractal Porous Media [M]. Beijing: Science Press, 2014. | |
22 | 蔡建超, 胡祥云. 多孔介质分形理论与应用[M]. 北京: 科学出版社, 2015. |
Cai J C, Hu X Y. Fractal Theory and Application of Porous Media [M]. Beijing: Science Press, 2015. | |
23 | Pia G, Corcione C E, Striani R, et al. Thermal conductivity of porous stones treated with UV light-cured hybrid organic-inorganic methacrylic-based coating: experimental and fractal modeling procedure [J]. Progress in Organic Coatings, 2016, 94: 105-115 |
24 | Davey K, Prosser R, Jiang C. Heat transfer through fractal-like porous media: a tessellated continuum approach [J]. Computers & Structures, 2015, 151: 58-72 |
25 | Yiotis A G, Tsimpanogiannis I N, Stubos A K. Fractal characteristics and scaling of the drying front in porous media: a pore network study [J]. Drying Technology, 2010, 28(8): 981-990. |
26 | Vladimirov I G, Klimenko A Y. Tracing diffusion in porous media with fractal properties [J]. Siam Journal on Multiscale Modeling & Simulation, 2010, 8(4): 1178-1211. |
27 | Lee B H, Lee S K. Effects of specific surface area and porosity on cube counting fractal dimension, lacunarity, configurational entropy, and permeability of model porous networks: random packing simulations and NMR micro-imaging study [J]. Journal of Hydrology, 2013, 496(14): 122-141. |
28 | Alaimo G, Zingales M. Laminar flow through fractal porous materials: the fractional-order transport equation [J]. Communications in Nonlinear Science & Numerical Simulation, 2015, 22(1/2/3): 889-902. |
29 | 王志国, 张雷, 张文福, 等. 油藏多孔介质热质传递“三箱”分析模型研究[J]. 力学学报, 2014, 46(3): 361-368. |
Wang Z G, Zhang L, Zhang W F, et al. Research on the “three-box” analysis model of heat and mass transfer in porous media [J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 361-368. | |
30 | Zaoui A. Matériaux Hétérogènes et Composites [M]. Palaiseau, Fnaree: École Polytechnique, 1999. |
31 | Zoaui A. Continuum micromechanics: suvre [J]. Journal of Engineering Mechanics, 2002, 128(8): 808-816. |
32 | Katz A J, Thompson A H. Fractal sandstone pores: implications for conductivity and pore formation [J]. Physical Review Letters, 1985, 54(12): 1325-1328. |
[1] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[2] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[3] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[4] | 王光宇, 张锴, 张凯华, 张东柯. 微波加热干燥煤泥热质传递及其能耗特性分析[J]. 化工学报, 2023, 74(6): 2382-2390. |
[5] | 刘远超, 蒋旭浩, 邵钶, 徐一帆, 钟建斌, 李耑. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
[6] | 李振, 张博, 王丽伟. PEG-EG固-固相变材料的制备和性能研究[J]. 化工学报, 2023, 74(6): 2680-2688. |
[7] | 姚晓宇, 沈俊, 李健, 李振兴, 康慧芳, 唐博, 董学强, 公茂琼. 流体气液临界参数测量方法研究进展[J]. 化工学报, 2023, 74(5): 1847-1861. |
[8] | 陈科, 杜理, 曾英, 任思颖, 于旭东. 四元体系LiCl+MgCl2+CaCl2+H2O 323.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(5): 1896-1903. |
[9] | 贾晓宇, 杨剑, 王博, 林梅, 王秋旺. 金属丝网毛细特性的孔隙尺度数值分析[J]. 化工学报, 2023, 74(5): 1928-1938. |
[10] | 王荣, 王永洪, 张新儒, 李晋平. 6FDA型聚酰亚胺炭分子筛气体分离膜的构筑及其应用[J]. 化工学报, 2023, 74(4): 1433-1445. |
[11] | 胡香凝, 尹渊博, 袁辰, 是赟, 刘翠伟, 胡其会, 杨文, 李玉星. 成品油在土壤中运移可视化的实验研究[J]. 化工学报, 2023, 74(4): 1827-1835. |
[12] | 王晓萱, 胡晓红, 陆雨楠, 王士勇, 凡凤仙. 旋转膜过滤器内部流动特性数值模拟[J]. 化工学报, 2023, 74(4): 1489-1498. |
[13] | 张银宁, 王进卿, 冯致, 詹明秀, 徐旭, 张光学, 池作和. 升温条件下多孔介质内气泡的生长和聚并行为[J]. 化工学报, 2023, 74(4): 1509-1518. |
[14] | 杨辉著, 兰精灵, 杨月, 梁嘉林, 吕传文, 朱永刚. 高功率平板热管传热性能的实验研究[J]. 化工学报, 2023, 74(4): 1561-1569. |
[15] | 毛元敬, 杨智, 莫松平, 郭浩, 陈颖, 罗向龙, 陈健勇, 梁颖宗. C6~C10烷醇的SAFT-VR Mie状态方程参数回归及其热物性研究[J]. 化工学报, 2023, 74(3): 1033-1041. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||