化工学报 ›› 2021, Vol. 72 ›› Issue (11): 5620-5632.DOI: 10.11949/0438-1157.20210799
任雪宇(),曹景沛(),姚乃瑜,赵小燕,冯晓博,刘天龙,赵云鹏
收稿日期:
2021-06-17
修回日期:
2021-08-26
出版日期:
2021-11-05
发布日期:
2021-11-12
通讯作者:
曹景沛
作者简介:
任雪宇(1992—),女,博士研究生,基金资助:
Xueyu REN(),Jingpei CAO(),Naiyu YAO,Xiaoyan ZHAO,Xiaobo FENG,Tianlong LIU,Yunpeng ZHAO
Received:
2021-06-17
Revised:
2021-08-26
Online:
2021-11-05
Published:
2021-11-12
Contact:
Jingpei CAO
摘要:
在相同的水热合成条件下,以氧化炭黑为硬模板和十六烷基三甲基溴化铵(CTAB)为软模板,经一步结晶法分别制得了一系列以晶内介孔为主和以无定形介孔为主的多级孔ZSM-5分子筛。通过采用次氯酸钠、双氧水和硝酸来氧化改性商业炭黑,以增加其亲水性及分散性,进而促进了ZSM-5在晶化过程中分子筛前体与炭粒之间的相互作用。重点阐述了不同碳源和CTAB对合成的多级孔ZSM-5物化结构特性的影响,并将该催化剂用于褐煤热解挥发分催化重整制备轻质芳烃的反应中。结果表明,成功构筑的孔径均一的微-介孔梯度的ZSM-5在催化重整褐煤热解挥发分提质过程中有效地解决了催化剂的扩散传质问题,抑制了催化剂失活。引入硝酸氧化改性炭黑晶化合成的ZSM-5分子筛在褐煤热解挥发分的催化重整反应中表现出了很好的催化性能,其中轻质芳烃含量达到27.0 mg/g,选择性为81.7%。此外,在氢气气氛下,该催化剂能够有效降低积炭的碳含量。
中图分类号:
任雪宇, 曹景沛, 姚乃瑜, 赵小燕, 冯晓博, 刘天龙, 赵云鹏. 模板法调控多级孔ZSM-5催化褐煤挥发分制备轻质芳烃的研究[J]. 化工学报, 2021, 72(11): 5620-5632.
Xueyu REN, Jingpei CAO, Naiyu YAO, Xiaoyan ZHAO, Xiaobo FENG, Tianlong LIU, Yunpeng ZHAO. Turning hierarchical ZSM-5 by template methods and its application in catalyzing lignite-derived volatiles to light aromatics[J]. CIESC Journal, 2021, 72(11): 5620-5632.
Sample | Surface area/(m2/g) | Pore volume/(cm3/g) | Dave⑤/nm | ||||
---|---|---|---|---|---|---|---|
SBET① | Smicro② | Sext② | Vtotal④ | Vmicro② | Vext③ | ||
CB | 1351 | 890 | 461 | 3.35 | 0.41 | 2.94 | 10.00 |
NaClO-CB | 1026 | 654 | 372 | 2.54 | 0.31 | 2.23 | 9.91 |
H2O2-CB | 450 | 101 | 349 | 1.47 | 0.05 | 1.42 | 13.00 |
HNO3-CB | 1232 | 838 | 394 | 1.97 | 0.39 | 1.58 | 6.38 |
HeZ5 | 386 | 350 | 36 | 0.23 | 0.14 | 0.09 | 2.43 |
HeZ5-Ⅰ | 345 | 312 | 33 | 0.21 | 0.15 | 0.06 | 2.44 |
HeZ5-Ⅱ | 364 | 312 | 52 | 0.23 | 0.16 | 0.07 | 2.56 |
HeZ5-Ⅲ | 377 | 347 | 30 | 0.21 | 0.16 | 0.05 | 2.27 |
HeZ5-Ⅳ | 344 | 264 | 80 | 0.19 | 0.16 | 0.03 | 2.23 |
HZSM-5 | 422 | 376 | 46 | 0.23 | 0.16 | 0.07 | 3.70 |
表1 氧化改性炭黑和多级孔ZSM-5的结构特性
Table 1 The textural properties of oxidation modified CB and hierarchical ZSM-5
Sample | Surface area/(m2/g) | Pore volume/(cm3/g) | Dave⑤/nm | ||||
---|---|---|---|---|---|---|---|
SBET① | Smicro② | Sext② | Vtotal④ | Vmicro② | Vext③ | ||
CB | 1351 | 890 | 461 | 3.35 | 0.41 | 2.94 | 10.00 |
NaClO-CB | 1026 | 654 | 372 | 2.54 | 0.31 | 2.23 | 9.91 |
H2O2-CB | 450 | 101 | 349 | 1.47 | 0.05 | 1.42 | 13.00 |
HNO3-CB | 1232 | 838 | 394 | 1.97 | 0.39 | 1.58 | 6.38 |
HeZ5 | 386 | 350 | 36 | 0.23 | 0.14 | 0.09 | 2.43 |
HeZ5-Ⅰ | 345 | 312 | 33 | 0.21 | 0.15 | 0.06 | 2.44 |
HeZ5-Ⅱ | 364 | 312 | 52 | 0.23 | 0.16 | 0.07 | 2.56 |
HeZ5-Ⅲ | 377 | 347 | 30 | 0.21 | 0.16 | 0.05 | 2.27 |
HeZ5-Ⅳ | 344 | 264 | 80 | 0.19 | 0.16 | 0.03 | 2.23 |
HZSM-5 | 422 | 376 | 46 | 0.23 | 0.16 | 0.07 | 3.70 |
Sample | C 1s | O 1s | C/O(atomic ratio) | |||||
---|---|---|---|---|---|---|---|---|
C—C | C—O | CO | OC—O | —CO | C—O | OC—O | ||
CB | 35.10 | 24.15 | 19.64 | 21.11 | 34.42 | 33.23 | 32.35 | 10.10 |
HNO3-CB | 36.18 | 22.31 | 19.44 | 22.07 | 35.04 | 33.15 | 31.81 | 3.85 |
表2 XPS光谱中各官能团的相对含量
Table 2 The relative content of functional groups in XPS spectra
Sample | C 1s | O 1s | C/O(atomic ratio) | |||||
---|---|---|---|---|---|---|---|---|
C—C | C—O | CO | OC—O | —CO | C—O | OC—O | ||
CB | 35.10 | 24.15 | 19.64 | 21.11 | 34.42 | 33.23 | 32.35 | 10.10 |
HNO3-CB | 36.18 | 22.31 | 19.44 | 22.07 | 35.04 | 33.15 | 31.81 | 3.85 |
图6 硬模板合成多级孔ZSM-5的SEM图、XRD谱图和孔径分布(DFT法)
Fig.6 SEM images, XRD patterns and pore size distribution curves (using the DFT method) of hierarchical ZSM-5 via “hard” template method
图8 软模板法合成HeZ5-Ⅳ的SEM图、XRD图和孔径分布(DFT法)
Fig.8 SEM images, XRD pattern and pore size distribution curves (using the DFT method) of HeZ5-Ⅳ via “soft” template method
Catalysts | Acidity/(mmol/g) | ||
---|---|---|---|
Strong acid | Weak acid | Total acid | |
HeZ5 | — | 0.57 | 0.57 |
HeZ5-Ⅰ | 0.11 | 0.18 | 0.29 |
HeZ5-Ⅱ | 0.06 | 0.12 | 0.18 |
HeZ5-Ⅲ | 0.11 | 0.18 | 0.29 |
HeZ5-Ⅳ | — | 0.11 | 0.12 |
HZSM-5[ | 0.36 | 0.83 | 1.19 |
表3 硬模板和软模板法合成多级孔ZSM-5的酸量
Table 3 The acidic amount of hierarchical ZSM-5 via “hard” and “soft” template methods
Catalysts | Acidity/(mmol/g) | ||
---|---|---|---|
Strong acid | Weak acid | Total acid | |
HeZ5 | — | 0.57 | 0.57 |
HeZ5-Ⅰ | 0.11 | 0.18 | 0.29 |
HeZ5-Ⅱ | 0.06 | 0.12 | 0.18 |
HeZ5-Ⅲ | 0.11 | 0.18 | 0.29 |
HeZ5-Ⅳ | — | 0.11 | 0.12 |
HZSM-5[ | 0.36 | 0.83 | 1.19 |
图10 挥发分经多级孔ZSM-5催化重整产物的碳产率、碳转化率和气体组成分布
Fig.10 Products carbon yields, carbon conversion yield and gaseous components distribution from catalytic reforming of volatiles over hierarchical ZSM-5
图11 挥发分经多级孔ZSM-5催化重整产生的BTEXN碳产率及其碳选择性
Fig.11 BTEXN carbon yields and its carbon selectivity during catalytic reforming of volatiles over hierarchical ZSM-5
1 | Ren X Y, Feng X B, Cao J P, et al. Catalytic conversion of coal and biomass volatiles: a review[J]. Energy & Fuels, 2020, 34(9): 10307-10363. |
2 | Qu H Q, Ma Y R, Li B, et al. Hierarchical zeolites: synthesis, structural control, and catalytic applications[J]. Emergent Materials, 2020, 3(3): 225-245. |
3 | Li Y, Li L, Yu J H. Applications of zeolites in sustainable chemistry[J]. Chem, 2017, 3(6): 928-949. |
4 | Liu Y Q, Yao Q X, Sun M, et al. Catalytic fast pyrolysis of coal tar asphaltene over zeolite catalysts to produce high-grade coal tar: an analytical Py-GC/MS study[J]. Journal of Analytical and Applied Pyrolysis, 2021, 156: 105127. |
5 | Bhoi P R, Ouedraogo A S, Soloiu V, et al. Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis[J]. Renewable and Sustainable Energy Reviews, 2020, 121: 109676. |
6 | Ren X Y, Cao J P, Zhao X Y, et al. Enhancement of aromatic products from catalytic fast pyrolysis of lignite over hierarchical HZSM-5 by piperidine-assisted desilication[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 1792-1802. |
7 | 赵岩, 刘银. HZSM-5分子筛催化热裂解生物质制备芳烃化合物[J]. 化工新型材料, 2017, 45(2): 145-147. |
Zhao Y, Liu Y. Production of aromatic hydrocarbons through catalytic pyrolysis of biomass used HZSM-5 as catalyst[J]. New Chemical Materials, 2017, 45(2): 145-147. | |
8 | Nishu, Liu R H, Rahman M M, et al. A review on the catalytic pyrolysis of biomass for the bio-oil production with ZSM-5: focus on structure[J]. Fuel Processing Technology, 2020, 199: 106301. |
9 | Ren X Y, Cao J P, Zhao X Y, et al. Catalytic upgrading of pyrolysis vapors from lignite over mono/bimetal-loaded mesoporous HZSM-5[J]. Fuel, 2018, 218: 33-40. |
10 | 王霏, 郑云武, 黄元波, 等. ZSM-5催化生物质三组分和松木热解生物油组分分析[J]. 农业工程学报, 2016, 32(S2): 331-337. |
Wang F, Zheng Y W, Huang Y B, et al. Component analysis of pyrolysis bio-oil from three major components of biomass and Pinus yunnanensis by ZSM-5 catalytic[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(S2): 331-337. | |
11 | Ren X Y, Cao J P, Zhao X Y, et al. Catalytic conversion of lignite pyrolysis volatiles to light aromatics over ZSM-5: SiO2/Al2O3 ratio effects and mechanism insights[J]. Journal of Analytical and Applied Pyrolysis, 2019, 139: 22-30. |
12 | Wang J X, Cao J P, Zhao X Y, et al. In situ upgrading of cellulose pyrolysis volatiles using hydrofluorinated and platinum-loaded HZSM-5 for high selectivity production of light aromatics[J]. Industrial & Engineering Chemistry Research, 2019, 58(49): 22193-22201. |
13 | Pavlačková Z, Košová G, Žilková N, et al. Formation of mesopores in ZSM-5 by carbon templating[M]//Studies in Surface Science and Catalysis. Amsterdam: Elsevier, 2006: 905-912. |
14 | 张壮壮, 刘楠, 安重鑫, 等. 多级孔ZSM-5分子筛对低阶煤流化床快速热解产物分布的影响[J]. 燃料化学学报, 2021, 49(4): 407-414. |
Zhang Z Z, Liu N, An C X, et al. Effect of hierarchical ZSM-5 zeolites on product distribution of low rank coal fast pyrolysis in a fluidized bed[J]. Journal of Fuel Chemistry and Technology, 2021, 49(4): 407-414. | |
15 | Koo J B, Jiang N Z, Saravanamurugan S, et al. Direct synthesis of carbon-templating mesoporous ZSM-5 using microwave heating[J]. Journal of Catalysis, 2010, 276(2): 327-334. |
16 | Zhao S F, Wang W D, Wang L Z, et al. Tuning hierarchical ZSM-5 zeolite for both gas- and liquid-phase biorefining[J]. ACS Catalysis, 2020, 10(2): 1185-1194. |
17 | Goodarzi F, Herrero I P, Kalantzopoulos G N, et al. Synthesis of mesoporous ZSM-5 zeolite encapsulated in an ultrathin protective shell of silicalite-1 for MTH conversion[J]. Microporous and Mesoporous Materials, 2020, 292: 109730. |
18 | Imyen T, Wannapakdee W, Limtrakul J, et al. Role of hierarchical micro-mesoporous structure of ZSM-5 derived from an embedded nanocarbon cluster synthesis approach in isomerization of alkenes, catalytic cracking and hydrocracking of alkanes[J]. Fuel, 2019, 254: 115593. |
19 | 魏玉函, 张馨月. 改性炭黑的表面性质与微观结构[J]. 胶体与聚合物, 2018, 36(4): 172-174, 177. |
Wei Y H, Zhang X Y. Surface properties and microstructure of the modified carbon black[J]. Chinese Journal of Colloid & Polymer, 2018, 36(4): 172-174, 177. | |
20 | Wang X, Chen H B, Meng F J, et al. CTAB resulted direct synthesis and properties of hierarchical ZSM-11/5 composite zeolite in the absence of template[J]. Microporous and Mesoporous Materials, 2017, 243: 271-280. |
21 | 李红玑, 周孝德, 张建民, 等. CTAB对多级孔分子筛合成及孔道层次结构影响[J]. 无机材料学报, 2018, 33(6): 629-634. |
Li H J, Zhou X D, Zhang J M, et al. CTAB on synthesis and pore structure of hierarchical zeolite[J]. Journal of Inorganic Materials, 2018, 33(6): 629-634. | |
22 | Ren X Y, Cao J P, Zhao S X, et al. Insights into coke location of catalyst deactivation during in situ catalytic reforming of lignite pyrolysis volatiles over cobalt-modified zeolites[J]. Applied Catalysis A: General, 2021, 613: 118018. |
23 | Puértolas B, Veses A, Callén M S, et al. Porosity-acidity interplay in hierarchical ZSM-5 zeolites for pyrolysis oil valorization to aromatics[J]. ChemSusChem, 2015, 8(19): 3283-3293. |
24 | Ren X Y, Zhao S X, Cao J P, et al. Effect of coal ranks on light aromatics production during reforming of pyrolysis volatiles over HZSM-5 under Ar and H2-assisted atmospheres[J]. Journal of Analytical and Applied Pyrolysis, 2020, 152: 104958. |
25 | He J Q, Chen D Y, Li N J, et al. Controlled fabrication of mesoporous ZSM-5 zeolite-supported PdCu alloy nanoparticles for complete oxidation of toluene[J]. Applied Catalysis B: Environmental, 2020, 265: 118560. |
26 | 李琳, 龚勇, 刘平, 等. 硝酸氧化法改善炭黑表面活性的研究[J]. 炭素技术, 2018, 37(4): 56-60. |
Li L, Gong Y, Liu P, et al. Study on the improvement of surface activity of carbon black by nitric acid oxidation[J]. Carbon Techniques, 2018, 37(4): 56-60. | |
27 | 梁晓娟, 杨昕宇, 弓中伟. 双氧水氧化制备高分散性炭黑[J]. 硅酸盐通报, 2008, 27(6): 1124-1128. |
Liang X J, Yang X Y, Gong Z W. Preparation of high dispersal carbon black by hydrogen peroxide oxidation method in aqueous solution[J]. Bulletin of the Chinese Ceramic Society, 2008, 27(6): 1124-1128. | |
28 | 张兰兰, 宋宇, 李国栋, 等. 不同模板剂合成具有介微结构的ZSM-5分子筛及其甲醇制丙烯性能[J]. 物理化学学报, 2015, 31(11): 2139-2150. |
Zhang L L, Song Y, Li G D, et al. ZSM-5 zeolite with micro-mesoporous structures synthesized using different templates for methanol to propylene reaction[J]. Acta Physico-Chimica Sinica, 2015, 31(11): 2139-2150. | |
29 | 陈爽, 韩顺玉, 白龙律, 等. 极浓体系碳模板合成介孔ZSM-5分子筛[J]. 天然气化工(C1化学与化工), 2018, 43(4): 27-30, 108. |
Chen S, Han S Y, Bai L L, et al. Synthesis of mesoporous ZSM-5 zeolite in an extremely concentrated system by carbon template[J]. Natural Gas Chemical Industry, 2018, 43(4): 27-30, 108. | |
30 | Han S Y, Wang Z, Meng L Y, et al. Synthesis of uniform mesoporous ZSM-5 using hydrophilic carbon as a hard template[J]. Materials Chemistry and Physics, 2016, 177: 112-117. |
31 | Feng R, Yan X L, Hu X Y, et al. Phosphorus-modified b-axis oriented hierarchical ZSM-5 zeolites for enhancing catalytic performance in a methanol to propylene reaction[J]. Applied Catalysis A: General, 2020, 594: 117464. |
32 | Ren X Y, Cao J P, Zhao S X, et al. Encapsulation Ni in HZSM-5 for catalytic hydropyrolysis of biomass to light aromatics[J]. Fuel Processing Technology, 2021, 218: 106854. |
33 | Zhang J S, Ding H, Zhang Y X, et al. An efficient one-pot strategy for synthesizing hierarchical aluminosilicate zeolites using single structure directing agent[J]. Chemical Engineering Journal, 2018, 335: 822-830. |
34 | Tarach K A, Tekla J, Makowski W, et al. Catalytic dehydration of ethanol over hierarchical ZSM-5 zeolites: studies of their acidity and porosity properties[J]. Catalysis Science & Technology, 2016, 6(10): 3568-3584. |
35 | Castaño P, Elordi G, Ibañez M, et al. Pathways of coke formation on an MFI catalyst during the cracking of waste polyolefins[J]. Catalysis Science & Technology, 2012, 2(3): 504. |
36 | Custodis V B, Hemberger P, Ma Z, et al. Mechanism of fast pyrolysis of lignin: studying model compounds[J]. The Journal of Physical Chemistry B, 2014, 118(29): 8524-8531. |
37 | Castaño P, Elordi G, Olazar M, et al. Insights into the coke deposited on HZSM-5, Hβ and HY zeolites during the cracking of polyethylene[J]. Applied Catalysis B: Environmental, 2011, 104(1/2): 91-100. |
38 | Chaouati N, Soualah A, Chater M, et al. Mechanisms of coke growth on mordenite zeolite[J]. Journal of Catalysis, 2016, 344: 354-364. |
[1] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[2] | 周继鹏, 何文军, 李涛. 异形催化剂上乙烯催化氧化失活动力学反应工程计算[J]. 化工学报, 2023, 74(6): 2416-2426. |
[3] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[4] | 王承泽, 顾凯丽, 张晋华, 石建轩, 刘艺娓, 李锦祥. 硫化协同老化零价铁增效去除水中Cr(Ⅵ)的作用机制[J]. 化工学报, 2023, 74(5): 2197-2206. |
[5] | 衣思敏, 马亚丽, 刘伟强, 张金帅, 岳岩, 郑强, 贾松岩, 李雪. 微晶菱镁矿蒸氨及水化动力学研究[J]. 化工学报, 2023, 74(4): 1578-1586. |
[6] | 陈瑞哲, 程磊磊, 顾菁, 袁浩然, 陈勇. 纤维增强树脂复合材料化学回收技术研究进展[J]. 化工学报, 2023, 74(3): 981-994. |
[7] | 张娜, 潘鹤林, 牛波, 张亚运, 龙东辉. 酚醛树脂热裂解反应机理的密度泛函理论研究[J]. 化工学报, 2023, 74(2): 843-860. |
[8] | 郝泽光, 张乾, 高增林, 张宏文, 彭泽宇, 杨凯, 梁丽彤, 黄伟. 生物质与催化裂化油浆共热解协同作用研究[J]. 化工学报, 2022, 73(9): 4070-4078. |
[9] | 邵健, 冯军宗, 柳凤琦, 姜勇刚, 李良军, 冯坚. 酚醛树脂基炭微球结构调控与功能化制备研究进展[J]. 化工学报, 2022, 73(9): 3787-3801. |
[10] | 陈晨, 杨倩, 陈云, 张睿, 刘冬. 不同氧浓度下煤挥发分燃烧的化学动力学研究[J]. 化工学报, 2022, 73(9): 4133-4146. |
[11] | 肖皓宇, 杨海平, 张雄, 陈应泉, 王贤华, 陈汉平. 塑料催化热解制备高附加值产品的研究进展[J]. 化工学报, 2022, 73(8): 3461-3471. |
[12] | 唐恺鸿, 何晓峰, 徐桂秋, 于洋, 刘啸凤, 葛铁军, 张爱玲. 酚醛泡沫的燃烧行为及阻燃研究进展[J]. 化工学报, 2022, 73(8): 3483-3500. |
[13] | 陈玉弓, 陈昊, 黄耀松. 基于分子反应动力学模拟的六甲基二硅氧烷热解机理研究[J]. 化工学报, 2022, 73(7): 2844-2857. |
[14] | 陈永安, 周安宁, 李云龙, 石智伟, 贺新福, 焦卫红. 磁性MgFe2O4及其核壳催化剂制备与煤热解性能研究[J]. 化工学报, 2022, 73(7): 3026-3037. |
[15] | 李丽媛, 王建强, 陈奕, 郭友娣, 周健, 刘志成, 王仰东, 谢在库. 甲醇制丙烯反应中ZSM-5分子筛催化剂积炭失活介尺度机制研究[J]. 化工学报, 2022, 73(6): 2669-2676. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||