化工学报 ›› 2021, Vol. 72 ›› Issue (11): 5633-5642.DOI: 10.11949/0438-1157.20210973
收稿日期:
2021-07-14
修回日期:
2021-09-06
出版日期:
2021-11-05
发布日期:
2021-11-12
通讯作者:
曹景沛
作者简介:
杨珍(1990—),女,博士研究生,基金资助:
Zhen YANG(),Jingpei CAO(),Chen ZHU,Tianlong LIU,Xiaoyan ZHAO
Received:
2021-07-14
Revised:
2021-09-06
Online:
2021-11-05
Published:
2021-11-12
Contact:
Jingpei CAO
摘要:
在不同碱性条件下水热合成了B-HZSM-5 (B-H5)催化剂用于原位催化褐煤热解挥发分制备轻质芳烃。通过X射线衍射仪、扫描电子显微镜、氨气程序升温脱附仪和N2物理吸附脱附表征了合成条件对分子筛的形貌、酸性和质构特征的影响。在强碱性条件下合成的分子筛表面更光滑、结晶度更高,Na-xB-H5(合成过程加碱)弱酸明显增强。与母体H5相比,Na-xB-H5骨架硼形成的B—OH—Si提供更多的弱酸位点能够吸附乙烯丙烯等中间产物,增加甲基化和烷基化速率。在具有较高的结晶度、丰富的酸位点和微孔/介孔的Na-0.69B-H5(硼添加量为0.69 g)上得到了最高烷基苯产率11.4 mg/g。而过量引入硼则会使骨架Al流失,强弱酸比例减少,抑制芳构化反应,降低轻质芳烃产率。通过骨架硼的引入调控分子筛酸性为褐煤催化热解提高轻质芳烃产率提供了新思路。
中图分类号:
杨珍, 曹景沛, 朱陈, 刘天龙, 赵小燕. B-ZSM-5酸调控及催化褐煤热解挥发分制轻质芳烃研究[J]. 化工学报, 2021, 72(11): 5633-5642.
Zhen YANG, Jingpei CAO, Chen ZHU, Tianlong LIU, Xiaoyan ZHAO. Catalytic conversion of lignite pyrolysis volatiles for enriching light aromatics over B-ZSM-5[J]. CIESC Journal, 2021, 72(11): 5633-5642.
图6 不同B添加量合成Na-xB-H5和xB-H5的孔径分布(基于BJH方法吸附支作图)
Fig.6 Pore size distribution of Na-xB-H5 and xB-H5 with different B content(determined by BJH method with adsorption)
Samples | SBET①/(m2/g) | Smicro②/(m2/g) | Sext③/(m2/g) | Vt④/(cm3/g) | Vmicro⑤/(cm3/g) | Vext⑥/(cm3/g) | Dave⑦/nm |
---|---|---|---|---|---|---|---|
Na-H5 | 389 | 343 | 46 | 0.29 | 0.16 | 0.13 | 2.9 |
Na-0.23B-H5 | 396 | 342 | 54 | 0.29 | 0.16 | 0.13 | 3.0 |
Na-0.46B-H5 | 403 | 346 | 57 | 0.30 | 0.15 | 0.15 | 2.9 |
Na-0.69B-H5 | 406 | 344 | 62 | 0.33 | 0.15 | 0.18 | 3.3 |
H5 | 427 | 386 | 41 | 0.48 | 0.16 | 0.32 | 4.1 |
0.23B-H5 | 447 | 397 | 50 | 0.35 | 0.17 | 0.18 | 3.1 |
0.46B-H5 | 438 | 389 | 49 | 0.36 | 0.16 | 0.20 | 3.4 |
0.69B-H5 | 436 | 393 | 43 | 0.41 | 0.16 | 0.25 | 3.8 |
表1 不同B添加量合成Na-xB-H5和xB-H5的结构性质
Table 1 Textural properties of Na-xB-H5 and xB-H5 with different B content
Samples | SBET①/(m2/g) | Smicro②/(m2/g) | Sext③/(m2/g) | Vt④/(cm3/g) | Vmicro⑤/(cm3/g) | Vext⑥/(cm3/g) | Dave⑦/nm |
---|---|---|---|---|---|---|---|
Na-H5 | 389 | 343 | 46 | 0.29 | 0.16 | 0.13 | 2.9 |
Na-0.23B-H5 | 396 | 342 | 54 | 0.29 | 0.16 | 0.13 | 3.0 |
Na-0.46B-H5 | 403 | 346 | 57 | 0.30 | 0.15 | 0.15 | 2.9 |
Na-0.69B-H5 | 406 | 344 | 62 | 0.33 | 0.15 | 0.18 | 3.3 |
H5 | 427 | 386 | 41 | 0.48 | 0.16 | 0.32 | 4.1 |
0.23B-H5 | 447 | 397 | 50 | 0.35 | 0.17 | 0.18 | 3.1 |
0.46B-H5 | 438 | 389 | 49 | 0.36 | 0.16 | 0.20 | 3.4 |
0.69B-H5 | 436 | 393 | 43 | 0.41 | 0.16 | 0.25 | 3.8 |
Catalysts | Acid/(mmol NH3/g) | Acidity density/ (mmol/m2) | Relative crystallinity① /% | Al②/% | B②/% | ||
---|---|---|---|---|---|---|---|
Weak (150~300℃) | Strong (300~500℃) | Total | |||||
Na-H5 | 0.12 | 0.12 | 0.24 | 0.00062 | 100 | — | — |
Na-0.23B-H5 | 0.18 | 0.14 | 0.32 | 0.00081 | 99.3 | — | — |
Na-0.46B-H5 | 0.22 | 0.13 | 0.35 | 0.00087 | 99.3 | — | — |
Na-0.69B-H5 | 0.20 | 0.14 | 0.34 | 0.00084 | 98.9 | — | — |
Na-0.92B-H5 | 0.21 | 0.13 | 0.34 | — | 99.1 | — | — |
H5 | 0.09 | 0.16 | 0.25 | 0.00059 | 99.8 | — | — |
0.23B-H5 | 0.15 | 0.11 | 0.26 | 0.00058 | 99.3 | 0.7 | 0.1 |
0.46B-H5 | 0.11 | 0.07 | 0.18 | 0.00041 | 99.2 | 0.8 | 0.2 |
0.69B-H5 | 0.09 | 0.05 | 0.14 | 0.00032 | 99.3 | 0.7 | 0.1 |
表2 不同B添加量合成Na-xB-H5和xB-H5的酸分布
Table 2 Acidity distribution of Na-xB-H5 and xB-H5 with different B content
Catalysts | Acid/(mmol NH3/g) | Acidity density/ (mmol/m2) | Relative crystallinity① /% | Al②/% | B②/% | ||
---|---|---|---|---|---|---|---|
Weak (150~300℃) | Strong (300~500℃) | Total | |||||
Na-H5 | 0.12 | 0.12 | 0.24 | 0.00062 | 100 | — | — |
Na-0.23B-H5 | 0.18 | 0.14 | 0.32 | 0.00081 | 99.3 | — | — |
Na-0.46B-H5 | 0.22 | 0.13 | 0.35 | 0.00087 | 99.3 | — | — |
Na-0.69B-H5 | 0.20 | 0.14 | 0.34 | 0.00084 | 98.9 | — | — |
Na-0.92B-H5 | 0.21 | 0.13 | 0.34 | — | 99.1 | — | — |
H5 | 0.09 | 0.16 | 0.25 | 0.00059 | 99.8 | — | — |
0.23B-H5 | 0.15 | 0.11 | 0.26 | 0.00058 | 99.3 | 0.7 | 0.1 |
0.46B-H5 | 0.11 | 0.07 | 0.18 | 0.00041 | 99.2 | 0.8 | 0.2 |
0.69B-H5 | 0.09 | 0.05 | 0.14 | 0.00032 | 99.3 | 0.7 | 0.1 |
催化剂 | 气体产率/(mmol/g) | ||||||
---|---|---|---|---|---|---|---|
H2 | CH4 | C2H6 | C2H4 | C3~C4 | CO | CO2 | |
Na-H5 | 1.37 | 0.95 | 0.10 | 0.40 | 0.01 | 1.10 | 1.41 |
Na-0.23B-H5 | 1.40 | 0.89 | 0.08 | 0.31 | 0.01 | 1.23 | 0.86 |
Na-0.46B-H5 | 1.22 | 0.75 | 0.06 | 0.25 | 0.01 | 1.12 | 0.76 |
Na-0.69B-H5 | 1.16 | 0.76 | 0.06 | 0.26 | <0.01 | 1.16 | 0.62 |
Na-0.92B-H5 | 1.47 | 0.86 | 0.07 | 0.28 | <0.01 | 1.28 | 0.79 |
H5 | 1.23 | 0.81 | 0.07 | 0.30 | 0.01 | 1.25 | 0.78 |
0.23B-H5 | 1.06 | 0.83 | 0.08 | 0.31 | 0.01 | 1.23 | 0.76 |
0.46B-H5 | 1.26 | 0.84 | 0.08 | 0.32 | 0.02 | 1.26 | 0.89 |
0.69B-H5 | 1.13 | 0.85 | 0.09 | 0.34 | 0.01 | 1.27 | 1.01 |
表3 不同催化剂下褐煤催化热解的气体产率
Table 3 Gas yield of lignite catalytic pyrolysis over different catalysts
催化剂 | 气体产率/(mmol/g) | ||||||
---|---|---|---|---|---|---|---|
H2 | CH4 | C2H6 | C2H4 | C3~C4 | CO | CO2 | |
Na-H5 | 1.37 | 0.95 | 0.10 | 0.40 | 0.01 | 1.10 | 1.41 |
Na-0.23B-H5 | 1.40 | 0.89 | 0.08 | 0.31 | 0.01 | 1.23 | 0.86 |
Na-0.46B-H5 | 1.22 | 0.75 | 0.06 | 0.25 | 0.01 | 1.12 | 0.76 |
Na-0.69B-H5 | 1.16 | 0.76 | 0.06 | 0.26 | <0.01 | 1.16 | 0.62 |
Na-0.92B-H5 | 1.47 | 0.86 | 0.07 | 0.28 | <0.01 | 1.28 | 0.79 |
H5 | 1.23 | 0.81 | 0.07 | 0.30 | 0.01 | 1.25 | 0.78 |
0.23B-H5 | 1.06 | 0.83 | 0.08 | 0.31 | 0.01 | 1.23 | 0.76 |
0.46B-H5 | 1.26 | 0.84 | 0.08 | 0.32 | 0.02 | 1.26 | 0.89 |
0.69B-H5 | 1.13 | 0.85 | 0.09 | 0.34 | 0.01 | 1.27 | 1.01 |
1 | Li Z L, Lepore A W, Salazar M F, et al. Selective conversion of bio-derived ethanol to renewable BTX over Ga-ZSM-5[J]. Green Chemistry, 2017, 19(18): 4344-4352. |
2 | Xu Y B, Liu D P, Liu X H. Conversion of syngas toward aromatics over hybrid Fe-based Fischer-Tropsch catalysts and HZSM-5 zeolites[J]. Applied Catalysis A: General, 2018, 552: 168-183. |
3 | Yang Z, Cao J P, Liu T L, et al. Controllable hollow HZSM-5 for high shape-selectivity to light aromatics from catalytic reforming of lignite pyrolysis volatiles[J]. Fuel, 2021, 294: 120427. |
4 | 黄澎, 吴艳, 马博文, 等. 淖毛湖煤热解重油直接转化制备芳烃化合物研究[J]. 燃料化学学报, 2021, 49(5): 664-672. |
Huang P, Wu Y, Ma B W, et al. Study on direct conversion of Naomaohu coal pyrolysis heavy oil to aromatics[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 664-672. | |
5 | Ren X Y, Cao J P, Zhao X Y, et al. Increasing light aromatic products during upgrading of lignite pyrolysis vapor over Co-modified HZSM-5[J]. Journal of Analytical and Applied Pyrolysis, 2018, 130: 190-197. |
6 | Bi C Y, Wang X, You Q, et al. Catalytic upgrading of coal pyrolysis volatiles by Ga-substituted mesoporous ZSM-5[J]. Fuel, 2020, 267: 117217. |
7 | 张壮壮, 刘楠, 安重鑫, 等. 多级孔ZSM-5分子筛对低阶煤流化床快速热解产物分布的影响[J]. 燃料化学学报, 2021, 49(4): 407-414. |
Zhang Z Z, Liu N, An C X, et al. Effect of hierarchical ZSM-5 zeolites on product distribution of low rank coal fast pyrolysis in a fluidized bed[J]. Journal of Fuel Chemistry and Technology, 2021, 49(4): 407-414. | |
8 | Zhao J P, Cao J P, Wei F, et al. Catalytic reforming of lignite pyrolysis volatiles over sulfated HZSM-5: significance of the introduced extra-framework Al species[J]. Fuel, 2020, 273: 117789. |
9 | Wei B Y, Yang H, Hu H Q, et al. Enhanced production of light tar from integrated process of in situ catalytic upgrading lignite tar and methane dry reforming over Ni/mesoporous Y[J]. Fuel, 2020, 279: 118533. |
10 | 郭淑佳, 王森, 罗耀亚, 等. H-ZSM-5分子筛形貌对ZnCr2O4/H-ZSM-5双功能催化剂合成气制芳烃催化性能的影响[J]. 燃料化学学报, 2020, 48(8): 970-979. |
Guo S J, Wang S, Luo Y Y, et al. Effect of H-ZSM-5 zeolite morphology on the performance of bifunctional ZnCr2O4/H-ZSM-5 catalysts in the direct conversion of syngas into aromatics[J]. Journal of Fuel Chemistry and Technology, 2020, 48(8): 970-979. | |
11 | Wang K, Huang X, Li D B. Hollow ZSM-5 zeolite grass ball catalyst in methane dehydroaromatization: one-step synthesis and the exceptional catalytic performance[J]. Applied Catalysis A: General, 2018, 556: 10-19. |
12 | Yaripour F, Shariatinia Z, Sahebdelfar S, et al. Effect of boron incorporation on the structure, products selectivities and lifetime of H-ZSM-5 nanocatalyst designed for application in methanol-to-olefins (MTO) reaction[J]. Microporous and Mesoporous Materials, 2015, 203: 41-53. |
13 | Karakaya Yalcin B, Ipek B. Fluoride-free synthesis of mesoporous [Al]-[B]-ZSM-5 using cetyltrimethylammonium bromide and methanol-to-olefin activity with high propene selectivity[J]. Applied Catalysis A: General, 2021, 610: 117915. |
14 | Sadeghpour P, Haghighi M, Khaledi K. High-temperature efficient isomorphous substitution of boron into ZSM-5 nanostructure for selective and stable production of ethylene and propylene from methanol[J]. Materials Chemistry and Physics, 2018, 217: 133-150. |
15 | Beheshti M S, Behzad M, Ahmadpour J, et al. Modification of H-[B]-ZSM-5 zeolite for methanol to propylene (MTP) conversion: Investigation of extrusion and steaming treatments on physicochemical characteristics and catalytic performance[J]. Microporous and Mesoporous Materials, 2020, 291: 109699. |
16 | 翟岩亮, 张少龙, 张络明, 等. 不同B, Al分布对ZSM-5分子筛的甲醇制丙烯反应性能的影响[J]. 物理化学学报, 2019, 35(11): 1248-1258. |
Zhai Y L, Zhang S L, Zhang L M, et al. Effect of B and Al distribution in ZSM-5 zeolite on methanol to propylene reaction performance[J]. Acta Physico-Chimica Sinica, 2019, 35(11): 1248-1258. | |
17 | Yang Y S, Sun C, Du J M, et al. The synthesis of endurable B-Al-ZSM-5 catalysts with tunable acidity for methanol to propylene reaction[J]. Catalysis Communications, 2012, 24: 44-47. |
18 | Zhou G Q, Li J, Yu Y Q, et al. Optimizing the distribution of aromatic products from catalytic fast pyrolysis of cellulose by ZSM-5 modification with boron and co-feeding of low-density polyethylene[J]. Applied Catalysis A: General, 2014, 487: 45-53. |
19 | Beheshti M S, Ahmadpour J, Behzad M, et al. Preparation of hierarchical H-[B]-ZSM-5 zeolites by a desilication method as a highly selective catalyst for conversion of methanol to propylene[J]. Brazilian Journal of Chemical Engineering, 2021, 38(1): 101-121. |
20 | Zhai Y L, Zhang S L, Shang Y S, et al. Boosting the turnover number of core–shell Al-ZSM-5@B-ZSM-5 zeolite for methanol to propylene reaction by modulating its gradient acid site distribution and low consumption diffusion[J]. Catalysis Science & Technology, 2019, 9(3): 659-671. |
21 | Xu A N, Ma H F, Zhang H T, et al. Effect of boron on ZSM-5 catalyst for methanol to propylene conversion[J]. Polish Journal of Chemical Technology, 2013, 15(4): 95-101. |
22 | Qiao Q W, Wang R J, Gou M L, et al. Catalytic performance of boron and aluminium incorporated ZSM-5 zeolites for isomerization of styrene oxide to phenylacetaldehyde[J]. Microporous and Mesoporous Materials, 2014, 195: 250-257. |
23 | Xiao H, Zhang J F, Wang P, et al. Mechanistic insight to acidity effects of Ga/HZSM-5 on its activity for propane aromatization[J]. RSC Advances, 2015, 5(112): 92222-92233. |
24 | Song Y Q, Zhu X X, Xie S J, et al. The effect of acidity on olefin aromatization over potassium modified ZSM-5 catalysts[J]. Catalysis Letters, 2004, 97(1/2): 31-36. |
25 | 汪青松, 李工, 郭剑桥, 等. 含硼杂原子Na-B-ZSM-5分子筛对甲醇脱氢制甲醛反应的催化性能[J]. 燃料化学学报, 2014, 42(5): 616-624. |
Wang Q S, Li G, Guo J Q, et al. Catalytic performance of boron-containing Na-B-ZSM-5 molecular sieves in methanol dehydrogenation to formaldehyde[J]. Journal of Fuel Chemistry and Technology, 2014, 42(5): 616-624. | |
26 | Venegas J M, McDermott W P, Hermans I. Serendipity in catalysis research: boron-based materials for alkane oxidative dehydrogenation[J]. Accounts of Chemical Research, 2018, 51(10): 2556-2564. |
27 | Shi L, Yan B, Shao D, et al. Selective oxidative dehydrogenation of ethane to ethylene over a hydroxylated boron nitride catalyst[J]. Chinese Journal of Catalysis, 2017, 38(2): 389-395. |
28 | Ye J H, Bai L, Liu B Y, et al. Fabrication of a pillared ZSM-5 framework for shape selectivity of ethane dehydroaromatization[J]. Industrial & Engineering Chemistry Research, 2019, 58(17): 7094-7106. |
29 | 仉利, 姚宗路, 赵立欣, 等. 生物质热化学转化提质及其催化剂研究进展[J]. 化工学报, 2020, 71(8): 3416-3427. |
Zhang L, Yao Z L, Zhao L X, et al. Research progress on thermochemical conversion of biomass to enhance quality and catalyst[J]. CIESC Journal, 2020, 71(8): 3416-3427. | |
30 | 王德亮, 陈兆辉, 余剑, 等. 不同硅铝比HZSM-5分子筛对煤热解挥发物催化提质的影响[J]. 燃料化学学报, 2021, 49(5): 634-640. |
Wang D L, Chen Z H, Yu J, et al. Effect of Si/Al ratio of HZSM-5 zeolites on catalytic upgrading of coal pyrolysis volatiles[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 634-640. | |
31 | 王洪华, 孙丽媛, 邢隆飞, 等. ZSM-5分子筛上轻烃裂解性能: 晶粒尺寸的影响[J]. 化工学报, 2015, 66(10): 3940-3949. |
Wang H H, Sun L Y, Xing L F, et al. Transformation of light hydrocarbons to olefins: effect of ZSM-5 zeolites crystal size[J]. CIESC Journal, 2015, 66(10): 3940-3949. | |
32 | Gou J S, Wang Z P, Li C, et al. The effects of ZSM-5 mesoporosity and morphology on the catalytic fast pyrolysis of furan[J]. Green Chemistry, 2017, 19(15): 3549-3557. |
33 | Chen J L, Liang T Y, Li J F, et al. Regulation of framework aluminum siting and acid distribution in H-MCM-22 by boron incorporation and its effect on the catalytic performance in methanol to hydrocarbons[J]. ACS Catalysis, 2016, 6(4): 2299-2313. |
34 | 姜凡. 硼硅分子筛的制备及其催化丙烷氧化脱氢反应的性能研究[D]. 大连: 大连理工大学, 2019. |
Jiang F. Preparation of borosilicate molecular sieves and their catalytic performance for oxidative dehydrogenation of propane[D]. Dalian: Dalian University of Technology, 2019. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[3] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[4] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[5] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[6] | 孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
[7] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[8] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[9] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[10] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[11] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[12] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[13] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[14] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[15] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||