化工学报 ›› 2021, Vol. 72 ›› Issue (4): 1833-1846.DOI: 10.11949/0438-1157.20200985
李海燕1(),刘欢1,2(),张秀菊1,王阁义1,2,周巧燕1,陈同舟3,姚洪1
收稿日期:
2020-07-21
修回日期:
2020-09-29
出版日期:
2021-04-05
发布日期:
2021-04-05
通讯作者:
刘欢
作者简介:
李海燕(1997—),女,硕士研究生,基金资助:
LI Haiyan1(),LIU Huan1,2(),ZHANG Xiuju1,WANG Geyi1,2,ZHOU Qiaoyan1,CHEN Tongzhou3,YAO Hong1
Received:
2020-07-21
Revised:
2020-09-29
Online:
2021-04-05
Published:
2021-04-05
Contact:
LIU Huan
摘要:
火力发电是我国的主要发电方式,在燃用煤、生物质等固体燃料时会面临锅炉换热面的冲蚀磨损或腐蚀问题,导致管道失效停炉,严重影响了电厂的安全稳定运行。超声速火焰(HVOF)喷涂作为热喷涂工艺的一种,可以通过在换热管道表面添加防护涂层来缓解磨损或腐蚀问题。因其制备的涂层具有与基体结合强度高、孔隙率低等优异的特点,在锅炉换热面的耐磨损耐腐蚀方面研究及应用前景广阔。综述了HVOF喷涂的发展、工艺流程以及涂层的特性,并重点总结了用于提升锅炉换热面耐磨损耐腐蚀性能的HVOF涂层材料,以及不同材料应用时需要考虑的环境因素。最后从工艺优化、材料进步以及实验方法创新三个方面对HVOF工艺在锅炉换热面上的应用做出展望。
中图分类号:
李海燕, 刘欢, 张秀菊, 王阁义, 周巧燕, 陈同舟, 姚洪. HVOF喷涂用于提高锅炉换热面耐磨损耐腐蚀性能综述[J]. 化工学报, 2021, 72(4): 1833-1846.
LI Haiyan, LIU Huan, ZHANG Xiuju, WANG Geyi, ZHOU Qiaoyan, CHEN Tongzhou, YAO Hong. Summary of improving erosion and corrosion resistance of heat exchange surfaces in boilers through HVOF technology[J]. CIESC Journal, 2021, 72(4): 1833-1846.
1 | 中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2019. |
National Bureau of Statistics of the People's Republic of China. China Statistical Yearbook[M]. Beijing: China Statistics Press, 2019. | |
2 | 段飘飘. 西南地区高硫煤有害元素地球化学特征及其洗选分配规律[D]. 徐州: 中国矿业大学, 2017. |
Duan P P. Geochemistry of toxic elements in high-sulfur coal from southwest China and their partitioning during coal preparation[D]. Xuzhou: China University of Mining and Technology, 2017. | |
3 | 王礼鹏. 准东煤燃烧过程中的沾污结渣特征实验研究[D]. 武汉: 华中科技大学, 2015. |
Wang L P. Experiment study on the slagging and fouling characteristics during Zhundong coal combustion[D]. Wuhan: Huazhong University of Science and Technology, 2015. | |
4 | 王进卿, 池作和, 袁益超, 等. 锅炉受热面复合陶瓷涂层抗高温SO2腐蚀性能[J]. 化工学报, 2017, 68(11): 4221-4228. |
Wang J Q, Chi Z H, Yuan Y C, et al. SO2 corrosion resistance of composite ceramic coating for boiler heating surface[J]. CIESC Journal, 2017, 68(11): 4221-4228. | |
5 | Antonov M, Veinthal R, Huttunen-Saarivirta E, et al. Effect of oxidation on erosive wear behaviour of boiler steels[J]. Tribology International, 2013, 68: 35-44. |
6 | 王立新. 循环流化床锅炉水冷壁防磨技术研究[D]. 保定: 华北电力大学, 2007. |
Wang L X. Research on anti-abrasion technology of water-wall tubes in circulating fluidized bed boiler[D]. Baoding: North China Electric Power University, 2007. | |
7 | 夏云飞. 循环流化床锅炉水冷壁磨损机理与防止研究[D]. 杭州: 浙江大学, 2015. |
Xia Y F. Wear mechanism and protection of waterwall in a CFB boiler[D]. Hangzhou: Zhejiang University, 2015. | |
8 | Szymański K, Hernas A, Moskal G, et al. Thermally sprayed coatings resistant to erosion and corrosion for power plant boilers - a review[J]. Surface and Coatings Technology, 2015, 268: 153-164. |
9 | Pronobis M. Harmful phenomena in modernized boilers[M]//Environmentally Oriented Modernization of Power Boilers. Amsterdam: Elsevier, 2020: 213-282. |
10 | Nielsen H P, Frandsen F J, Dam-Johansen K, et al. The implications of chlorine-associated corrosion on the operation of biomass-fired boilers[J]. Progress in Energy and Combustion Science, 2000, 26(3): 283-298. |
11 | Sorell G. The role of chlorine in high temperature corrosion in waste-to-energy plants[J]. Materials at High Temperatures, 1997, 14(3): 207-220. |
12 | Grabke H J, Reese E, Spiegel M. The effects of chlorides, hydrogen chloride, and sulfur dioxide in the oxidation of steels below deposits[J]. Corrosion Science, 1995, 37(7): 1023-1043. |
13 | 王群. 燃煤电站锅炉水冷壁管防护涂层系统的开发与研究[D]. 武汉: 武汉理工大学, 2003. |
Wang Q. Research and development on system of coatings for protection of water wall tubes in coal-fired power station[D]. Wuhan: Wuhan University of Technology, 2003. | |
14 | Lee S H, Themelis N J, Castaldi M J. High-temperature corrosion in waste-to-energy boilers[J]. Journal of Thermal Spray Technology, 2007, 16(1): 104-110. |
15 | 包钢. 电站锅炉受热面磨损类型与防护[J]. 化工管理, 2017, (3): 196. |
Bao G. Type and protection of heat exchange surface abrasion in power station boilers [J]. Chemical Enterprise Management, 2017, (3): 196. | |
16 | 朱文斌. 生物质锅炉过热器受热面金属积灰腐蚀特性研究[D]. 济南: 山东大学, 2018. |
Zhu W B. Study on characteristics of corrosion related to ash deposition on heating surface of biomass boiler superheater[D]. Jinan: Shandong University, 2018. | |
17 | Heath G R, Heimgartner P, Irons G, et al. An assessment of thermal spray coating technologies for high temperature corrosion protection[J]. Materials Science Forum, 1997, 251/252/253/254: 809-816. |
18 | Smith R W, Knight R. Thermal spraying (Ⅰ): Powder consolidation—from coating to forming[J]. JOM, 1995, 47(8): 32-39. |
19 | Herman H, Sampath S, McCune R. Thermal spray: current status and future trends[J]. MRS Bulletin, 2000, 25(7): 17-25. |
20 | Pawlowski L. The Science and Engineering of Thermal Spray Coatings[M]. Chichester, UK:John Wiley & Sons, Ltd. , 2008. |
21 | Sidhu T S, Prakash S, Agrawal R D. Studies on the properties of high-velocity oxy-fuel thermal spray coatings for higher temperature applications[J]. Materials Science, 2005, 41(6): 805-823. |
22 | Wang B Q. Erosion-corrosion of thermal sprayed coatings in FBC boilers[J]. Wear, 1996, 199(1): 24-32. |
23 | Wang B Q. Erosion-corrosion of coatings by biomass-fired boiler fly ash[J]. Wear, 1995, 188(1/2): 40-48. |
24 | Sundararajan T, Kuroda S, Abe F. Steam oxidation studies on 50Ni-50Cr HVOF coatings on 9Cr-1Mo steel: change in structure and morphology across the coating/substrate interface[J]. Materials Transactions, 2004, 45(4): 1299-1305. |
25 | Sundararajan T, Kuroda S, Abe F. Effect of thermal spray on the microstructure and adhesive strength of high-velocity oxy-fuel-sprayed Ni-Cr coatings on 9Cr-1Mo steel[J]. Metallurgical and Materials Transactions A, 2004, 35(10): 3187-3199. |
26 | Uusitalo M A, Vuoristo P M J, Mäntylä T A. High temperature corrosion of coatings and boiler steels below chlorine-containing salt deposits[J]. Corrosion Science, 2004, 46(6): 1311-1331. |
27 | Uusitalo M A, Vuoristo P M J, Mäntylä T A. Elevated temperature erosion-corrosion of thermal sprayed coatings in chlorine containing environments[J]. Wear, 2002, 252(7/8): 586-594. |
28 | European Committee for Standardization. Thermal spraying-terminology, classification: [S]. UK: The British Standards Institution, 2017. |
29 | Davis J R. Handbook of Thermal Spray Technology[M]. America: ASM International, 2004. |
30 | Sadeghi E, Markocsan N, Joshi S. Advances in corrosion-resistant thermal spray coatings for renewable energy power plants(Ⅰ): Effect of composition and microstructure[J]. Journal of Thermal Spray Technology, 2019, 28(8): 1749-1788. |
31 | Siegmann S, Abert C. 100 years of thermal spray: about the inventor Max Ulrich Schoop[J]. Surface and Coatings Technology, 2013, 220: 3-13. |
32 | Schoop M U. Verfahren zum Herstellen dichter, metallischer Überzüge: DE258505[P]. 1913-04-07. |
33 | Quinlan F B, Grobel L P. Treatment of metals: US2303869A[P]. 1942-12-01. |
34 | Browning J A. Highly concentrated supersonic liquified material flame spray method and apparatus: US4540121[P]. 1985-09-10. |
35 | Lugscheider E, Herbst C, Zhao L D. Parameter studies on high-velocity oxy-fuel spraying of MCrAlY coatings[J]. Surface and Coatings Technology, 1998, 108/109: 16-23. |
36 | 贡太敏. HVOF用高性能硬质合金喷涂粉末的制备技术及其基础理论研究[D]. 长沙: 中南大学, 2012. |
Gong T M. Study on preparation of high performance cemented carbide spraying powder for HVOF and its basic mechanism[D]. Changsha: Central South University, 2012. | |
37 | 向锦涛. WC/Co基热喷涂粉末与涂层制备及其性能的研究[D]. 长沙: 湖南大学, 2012. |
Xiang J T. Study on preparation and properties of WC/Co-based thermal spray powder and coating[D]. Changsha: Hunan University, 2012. | |
38 | Irving B, Knight R, Smith R W. The HVOF process—the hottest topic in the thermal spray industry[J]. Welding Journal, 1993, 72(7): 25-30 |
39 | Kaur M, Singh H, Prakash S. A survey of the literature on the use of high velocity oxy-fuel spray technology for high temperature corrosion and erosion-corrosion resistant coatings[J]. Anti-Corrosion Methods and Materials, 2008, 55(2): 86-96. |
40 | Guilemany J M, Sobolev V, Nutting J. High Velocity Oxy-Fuel Spraying[M]. UK: Maney Publishing, 2004. |
41 | Kaur M, Singh H, Prakash S. High-temperature behavior of a high-velocity oxy-fuel sprayed Cr3C2-NiCr coating[J]. Metallurgical and Materials Transactions A, 2012, 43(8): 2979-2993. |
42 | 吴涛, 朱流, 郦剑, 等. 热喷涂技术现状与发展[J]. 国外金属热处理, 2005, 26(4): 2-6. |
Wu T, Zhu L, Li J, et al. Status and development of thermal spraying technology [J]. Heat Treatment of Metals Abroad, 2005, 26(4): 2-6. | |
43 | Hamatani H, Ichiyama Y, Kobayashi J. Mechanical and thermal properties of HVOF sprayed Ni based alloys with carbide[J]. Science and Technology of Advanced Materials, 2002, 3(4): 319-326. |
44 | Koutský J. High velocity oxy-fuel spraying[J]. Journal of Materials Processing Technology, 2004, 157/158: 557-560. |
45 | Torrell M, Dosta S, Miguel J R, et al. Optimisation of HVOF thermal spray coatings for their implementation as MSWI superheater protectors[J]. Corrosion Engineering, Science and Technology, 2010, 45(1): 84-93. |
46 | Espallargas N. Future Development of Thermal Spray Coatings: Types, Designs, Manufacture and Applications[M]. UK: Woodhead Publishing, 2015. |
47 | Rezakhani D. Corrosion behaviours of several thermal spray coatings used on boiler tubes at elevated temperatures[J]. Anti-Corrosion Methods and Materials, 2007, 54(4): 237-243. |
48 | Milanti A, Matikainen V, Koivuluoto H, et al. Effect of spraying parameters on the microstructural and corrosion properties of HVAF-sprayed Fe-Cr-Ni-B-C coatings[J]. Surface and Coatings Technology, 2015, 277: 81-90. |
49 | 中华人民共和国国家质量监督检验检疫总局. 热喷涂抗拉结合强度的测定. [S]. 北京: 中国标准出版社, 2003. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Thermal spraying: determiantion of tensile adhesive strength. [S]. Beijing: Standards Press of China, 2003. | |
50 | American Society for Testing and Materials. Standard test methods for determining area percentage porosity in thermal sprayed coatings: (2014)[S]. West Conshohocken, PA: ASTM International, 2014. |
51 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 热喷涂涂层厚度的无损测量方法. [S]. 北京: 中国标准出版社, 2013. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Thermal spraying coating—nondestructive methods for measurement of thickness. [S]. Beijing: Standards Press of China, 2013. | |
52 | 中华人民共和国国家质量监督检验检疫总局. 磁性基体上非磁性覆盖层厚度测量磁性法. [S]. 北京: 中国标准出版社, 2004. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Non-magnetic coatings on magnetic substrates—measurement of coating thickness—magnetic method. [S]. Beijing: Standards Press of China, 2004. | |
53 | 中华人民共和国国家质量监督检验检疫总局. 非磁性基体金属上非导电覆盖层厚度测量涡流法. [S]. 北京: 中国标准出版社, 2004. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Non-conductive coatings on non-magnetic basis metals—measurement of coating thickness—eddy current. [S]. Beijing: Standards Press of China, 2004. | |
54 | 钟成圆. 高耐磨损复合锅炉管的制备及其特性研究[D]. 北京: 华北电力大学, 2013. |
Zhong C Y. Preparing and properties research of wear resistance composite boiler tubes[D]. Beijing: North China Electric Power University, 2013. | |
55 | 杜宝忠. 循环流化床锅炉炉膛受热面磨损及预防技术研究[D]. 北京: 华北电力大学, 2014. |
Du B Z. Study on abrasion and anti-abrasion technology of furnace heating surfaces in circulating fluidized bed boiler[D]. Beijing: North China Electric Power University, 2014. | |
56 | 周新建. 电弧喷涂金属基陶瓷复合涂层耐高温磨粒磨损性能研究[D]. 北京: 北京工业大学, 2008. |
Zhou X J. Study on high temperature abrasive wear resistant properties of the arc sprayed metal-based ceramic composite coating[D]. Beijing: Beijing University of Technology, 2008. | |
57 | Zhang S H, Cho T Y, Yoon J H, et al. Characterization of microstructure and surface properties of hybrid coatings of WC-CoCr prepared by laser heat treatment and high velocity oxygen fuel spraying[J]. Materials Characterization, 2008, 59(10): 1412-1418. |
58 | Kumar H, Chittosiya C, Shukla V N. HVOF sprayed WC based cermet coating for mitigation of cavitation, erosion & abrasion in hydro turbine blade[J]. Materials Today: Proceedings, 2018, 5(2): 6413-6420. |
59 | Janka L, Berger L M, Norpoth J, et al. Improving the high temperature abrasion resistance of thermally sprayed Cr3C2-NiCr coatings by WC addition[J]. Surface and Coatings Technology, 2018, 337: 296-305 |
60 | Sidhu H S, Sidhu B S, Prakash S. Solid particle erosion of HVOF sprayed NiCr and Stellite-6 coatings[J]. Surface and Coatings Technology, 2007, 202(2): 232-238. |
61 | 于美杰. 循环流化床锅炉用耐高温磨蚀涂层的研究[D]. 青岛: 山东科技大学, 2004. |
Yu M J. Study on high-temperature abrasion resistant coatings of circulating fluidized bed boiler[D]. Qingdao: Shandong University of Science and Technology, 2004. | |
62 | Yang G J, Li C J, Zhang S J, et al. High-temperature erosion of HVOF sprayed Cr3C2-NiCr coating and mild steel for boiler tubes[J]. Journal of Thermal Spray Technology, 2008, 17(5/6): 782-787. |
63 | Stein K J, Schorr B S, Marder A R. Erosion of thermal spray MCr-Cr3C2 cermet coatings[J]. Wear, 1999, 224(1): 153-159. |
64 | Kunioshi C T, Correa O V, Ramanathan L V. High temperature oxidation and erosion-oxidation behaviour of HVOF sprayed Ni-20Cr, WC-20Cr-7Ni and Cr3C2-Ni-20Cr coatings[J]. Surface Engineering, 2006, 22(2): 121-127. |
65 | Sadeghi E, Joshi S. Chlorine-induced high-temperature corrosion and erosion-corrosion of HVAF and HVOF-sprayed amorphous Fe-based coatings[J]. Surface and Coatings Technology, 2019, 371: 20-35. |
66 | Wang B Q, Verstak A, Beliaev A. Intermetallic-ceramic coatings for metals protection against erosion-corrosion at high temperatures[C]// 54th Annual Conference and Exposition. San Antonio, TX (US), 1999. |
67 | Wang B Q, Lee S W. Erosion-corrosion behaviour of HVOF NiAl-Al2O3 intermetallic-ceramic coating[J]. Wear, 2000, 239(1): 83-90. |
68 | Wang B Q, Lee S W. Elevated temperature erosion of several thermal-sprayed coatings under the simulated erosion conditions of in-bed tubes in a fluidized bed combustor[J]. Wear, 1997, 203/204: 580-587. |
69 | Wang B Q. Chromium-titanium carbide cermet coating for elevated temperature erosion protection in fluidized bed combustion boilers[J]. Wear, 1999, 225/226/227/228/229: 502-509. |
70 | 王卜谦, 税正荣, 王海斗. 用于燃气锅炉低碳钢耐冲蚀-腐蚀磨损的双层热喷涂层[J]. 中国表面工程, 2001, 14(2): 43 |
Wang B Q, Shui Z R, Wang H D. Thermal sprayed dual-layer coatings for steel protection against corrosion-erosion at power boilers[J]. China Surface Engineering, 2001, 14(2): 43-48, 4. | |
71 | Paul S, Harvey M D F. Corrosion testing of Ni alloy HVOF coatings in high temperature environments for biomass applications[J]. Journal of Thermal Spray Technology, 2013, 22(2/3): 316-327. |
72 | Varis T, Bankiewicz D, Yrjas P, et al. High temperature corrosion of thermally sprayed NiCr and FeCr coatings covered with a KCl-K2SO4 salt mixture[J]. Surface and Coatings Technology, 2015, 265: 235-243. |
73 | Torrell M, Dosta S, Miguel J R, et al. Optimisation of HVOF thermal spray coatings for their implementation as MSWI superheater protectors[J]. Corrosion Engineering, Science and Technology, 2010, 45(1): 84-93. |
74 | Guilemany J M, Torrell M, Miguel J R. Erosion corrosion properties of HVOF coatings for municipal solid waste incinerator protection[J]. Corrosion Engineering, Science and Technology, 2008, 43(1): 38-45. |
75 | Jafari R, Sadeghi E. High-temperature corrosion performance of HVAF-sprayed NiCr, NiAl, and NiCrAlY coatings with alkali sulfate/chloride exposed to ambient air[J]. Corrosion Science, 2019, 160: 108066. |
76 | Viklund P, Hjörnhede A, Henderson P, et al. Corrosion of superheater materials in a waste-to-energy plant[J]. Fuel Processing Technology, 2013, 105: 106-112. |
77 | Montgomery M, Hansson A N, Jensen S A, et al. In situ corrosion testing of various nickel alloys at Måbjerg waste incineration plant[J]. Materials and Corrosion, 2013, 64(1): 14-25. |
78 | Oksa M, Auerkari P, Salonen J, et al. Nickel-based HVOF coatings promoting high temperature corrosion resistance of biomass-fired power plant boilers[J]. Fuel Processing Technology, 2014, 125: 236-245. |
79 | Li X Z, Zong D L, Li H C, et al. Investigations on the behavior of laser cladding Ni-Cr-Mo alloy coating on TP347H stainless steel tube in HCl rich environment[J]. Surface and Coatings Technology, 2013, 232: 627-639. |
80 | Chatha S S, Sidhu H S, Sidhu B S. High-temperature behavior of a NiCr-coated T91 boiler steel in the platen superheater of coal-fired boiler[J]. Journal of Thermal Spray Technology, 2013, 22(5): 838-847. |
81 | Kaur M, Singh H, Prakash S. High-temperature corrosion studies of HVOF-sprayed Cr3C2-NiCr coating on SAE-347H boiler steel[J]. Journal of Thermal Spray Technology, 2009, 18(4): 619-632. |
82 | Oksa M, Tuurna S, Varis T. Increased lifetime for biomass and waste to energy power plant boilers with HVOF coatings: high temperature corrosion testing under chlorine-containing molten salt[J]. Journal of Thermal Spray Technology, 2013, 22(5): 783-796. |
83 | Oksa M, Varis T, Ruusuvuori K. Performance testing of iron based thermally sprayed HVOF coatings in a biomass-fired fluidised bed boiler[J]. Surface and Coatings Technology, 2014, 251: 191-200. |
84 | Kawakita J, Kuroda S, Fukushima T, et al. Dense titanium coatings by modified HVOF spraying[J]. Surface and Coatings Technology, 2006, 201(3/4): 1250-1255. |
85 | 王诚杰. 掺杂对FeCoCrMoCBY大块非晶合金耐蚀、耐磨性能和热导率的影响[D]. 南昌: 南昌航空大学, 2016. |
Wang C J. Effect of doping on corrosion resistance property and wear resistance property and thermal conductivity of FeCoCrMoCBY BMGs[D]. Nanchang: Nanchang Hangkong University, 2016. | |
86 | 叶喜葱, 肖克强, 曹如心, 等. 硼元素对TiAl基合金凝固组织的影响[J]. 三峡大学学报(自然科学版), 2018, 40(6): 92-96. |
Ye X C, Xiao K Q, Cao R X, et al. Effect of boron on solidification structure of TiAl-based alloy[J]. Journal of China Three Gorges University (Natural Sciences), 2018, 40(6): 92-96. | |
87 | Natesan K. Coatings for improved corrosion resistance[J]. Special Publication: Royal Society of Chemistry, 1993, 127( 1): 115. |
88 | Kawahara Y. Development and application of high-temperature corrosion-resistant materials and coatings for advanced waste-to-energy plants[J]. Materials at High Temperatures, 1997, 14(3): 261-268. |
89 | Kawahara Y. An overview on corrosion-resistant coating technologies in biomass/waste-to-energy plants in recent decades[J]. Coatings, 2016, 6(3): 34. |
90 | 陈善平, 秦峰, 孙向军, 等. 垃圾焚烧发电厂余热锅炉蒸汽参数的比较研究[J]. 黑龙江电力, 2010, 32(3): 204-208. |
Chen S P, Qin F, Sun X J, et al. Comparative study on waste heat boiler steam parameter of garbage burning power plant[J]. Heilongjiang Electric Power, 2010, 32(3): 204-208. | |
91 | Grabke H J, Reese E, Spiegel M. The effects of chlorides, hydrogen chloride, and sulfur dioxide in the oxidation of steels below deposits[J]. Corrosion Science, 1995, 37(7): 1023-1043. |
92 | Kawahara Y. Materials for biomass/waste-to-energy boilers[M]// Handbook of Iron and Steel. The 3rd Volume: Microstructure and Properties of Materials. 5th ed. Sendai, Japan: The Iron and Steel Institute of Japan, 2014: 436-439. |
93 | 张凯宏. 锅炉管道超音速火焰喷涂涂层性能研究[D]. 武汉: 华中科技大学, 2017. |
Zhang K H. Study of high velocity oxygen fuel spraying coating characteristics of boiler tube[D]. Wuhan: Huazhong University of Science and Technology, 2017. |
[1] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[2] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[3] | 林典, 江国梅, 徐秀彬, 赵波, 刘冬梅, 吴旭. 硅基类液防原油黏附涂层的研制及其减阻性能研究[J]. 化工学报, 2023, 74(8): 3438-3445. |
[4] | 倪文翔, 赵京, 李博, 魏小林, 吴东垠, 刘迪, 王强. 转炉煤气全干法显热回收工艺中余热锅炉积灰特性研究[J]. 化工学报, 2023, 74(8): 3485-3493. |
[5] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[6] | 王志龙, 杨烨, 赵真真, 田涛, 赵桐, 崔亚辉. 搅拌时间和混合顺序对锂离子电池正极浆料分散特性的影响[J]. 化工学报, 2023, 74(7): 3127-3138. |
[7] | 赵婧, 顾程文, 蹇锡高, 翁志焕. 厚朴酚基环氧树脂防腐涂层的制备及性能评价[J]. 化工学报, 2023, 74(7): 3010-3017. |
[8] | 朱风, 陈凯琳, 黄小凤, 鲍银珠, 李文斌, 刘嘉鑫, 吴玮强, 高王伟. KOH改性电石渣脱除羰基硫的性能研究[J]. 化工学报, 2023, 74(6): 2668-2679. |
[9] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[10] | 崔张宁, 胡紫璇, 吴雷, 周军, 叶干, 刘田田, 张秋利, 宋永辉. 可降解纤维素基材料的耐水性能研究进展[J]. 化工学报, 2023, 74(6): 2296-2307. |
[11] | 张雪婷, 胡激江, 赵晶, 李伯耿. 高分子量聚丙二醇在微通道反应器中的制备[J]. 化工学报, 2023, 74(3): 1343-1351. |
[12] | 靳志远, 单国荣, 潘鹏举. AM/AMPS/SSS三元共聚物的制备及耐温耐盐性能[J]. 化工学报, 2023, 74(2): 916-923. |
[13] | 张浩, 王子悦, 程钰洁, 何晓辉, 纪红兵. 单原子催化剂规模化制备的研究进展[J]. 化工学报, 2023, 74(1): 276-289. |
[14] | 刘佳宁, 马嘉浩, 张军营, 程珏. 顺序双重热固化的硫醇-丙烯酸酯-环氧树脂三维网络的构建及性能[J]. 化工学报, 2022, 73(9): 4173-4186. |
[15] | 李承威, 骆华勇, 张铭轩, 廖鹏, 方茜, 荣宏伟, 王竞茵. 氢氧化镧交联壳聚糖微球的微流控制备及其除磷性能[J]. 化工学报, 2022, 73(9): 3929-3939. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||