化工学报 ›› 2021, Vol. 72 ›› Issue (4): 2276-2282.DOI: 10.11949/0438-1157.20201184
收稿日期:
2020-08-19
修回日期:
2020-10-22
出版日期:
2021-04-05
发布日期:
2021-04-05
通讯作者:
陈志豪
作者简介:
宇高义郎(1949—),男,博士,教授,基金资助:
UTAKA Yoshio1,2(),XU Jingying1,WANG Guozhuo1,CHEN Zhihao1,2()
Received:
2020-08-19
Revised:
2020-10-22
Online:
2021-04-05
Published:
2021-04-05
Contact:
CHEN Zhihao
摘要:
为了研究含水气体扩散层(GDL)的冻结特性及水分迁移规律,设计并搭建了含水GDL冻结过程的可视化观测系统。制备了不同润湿性的含水GDL,并对含水GDL的冻结过程进行了可视化实验研究,分析了含水GDL冻结过程中的温度变化,以及润湿性和过冷度对于结冰概率的影响。实验结果表明:含水GDL中的某点突然结冰引发整个GDL内水的过冷状态释放,随后在液固相变的体积膨胀作用下,尚未冻结的过冷水被挤压到GDL孔隙外;疏水性GDL会在更高过冷度下产生冻结现象;随着含水GDL温度的降低,内部过冷水的冻结概率不断增加。本研究探索了含水GDL的冻结特性,可为今后解决质子交换膜燃料电池(PEMFC)冷启动过程中GDL低温冻结问题奠定基础。
中图分类号:
宇高义郎, 许竞莹, 王国卓, 陈志豪. 质子交换膜燃料电池内含水气体扩散层的冻结特性研究[J]. 化工学报, 2021, 72(4): 2276-2282.
UTAKA Yoshio, XU Jingying, WANG Guozhuo, CHEN Zhihao. Study on freezing characteristics of water in gas diffusion layer of proton exchange membrane fuel cells[J]. CIESC Journal, 2021, 72(4): 2276-2282.
GDL | PTFE/%(质量) | 孔隙率ε/% | 密度/(g/cm3) | 饱和度S |
---|---|---|---|---|
GDL-0 | 0 | 78 | 0.39 | 60%~70% |
GDL-10 | 10 | 76 | 0.42 | 60%~70% |
GDL-20 | 20 | 73 | 0.45 | 60%~70% |
GDL-40 | 40 | 66 | 0.53 | 60%~70% |
表1 不同GDL的参数
Table 1 Parameters of different GDLs
GDL | PTFE/%(质量) | 孔隙率ε/% | 密度/(g/cm3) | 饱和度S |
---|---|---|---|---|
GDL-0 | 0 | 78 | 0.39 | 60%~70% |
GDL-10 | 10 | 76 | 0.42 | 60%~70% |
GDL-20 | 20 | 73 | 0.45 | 60%~70% |
GDL-40 | 40 | 66 | 0.53 | 60%~70% |
位置 | 平均冻结温度/℃ | 标准差 |
---|---|---|
A | -8.7 | 0.3 |
B | -8.4 | 0.2 |
C | -8.7 | 0.3 |
表2 不同成核点的平均冻结温度
Table 2 Average freezing temperatures at different nucleation points
位置 | 平均冻结温度/℃ | 标准差 |
---|---|---|
A | -8.7 | 0.3 |
B | -8.4 | 0.2 |
C | -8.7 | 0.3 |
1 | Jörissen L, Garche J. Polymer electrolyte membrane fuel cells[M]// Hydrogen and Fuel Cells. Berlin Heidelberg: Springer-Verlag, 2016: 239-250. |
2 | Singh A, Baredar P, Khare H, et al. Fuel cell: fundamental, classification, application, and environmental impact[M]// Low Carbon Energy Supply. Singapore: Springer, 2018: 363-385. |
3 | Carrette L, Friedrich K A, Stimming U. Fuel cells: principles, types, fuels, and applications[J]. ChemPhysChem, 2000, 1(4): 162-193. |
4 | Yuan X Z, Wang H J. PEM fuel cell fundamentals[M]//PEM Fuel Cell Electrocatalysts and Catalyst Layers. London: Springer London, 2008: 1-87. |
5 | 黄乃科, 王曙中, 李灵忻. 质子交换膜燃料电池电极用气体扩散层材料[J]. 电源技术, 2003, 27(3): 329-332. |
Huang N K, Wang S Z, Li L X. Gas diffusion layer for electrodes in proton exchange membrane fuel cell[J]. Chinese Journal of Power Sources, 2003, 27(3): 329-332. | |
6 | Park S, Popov B N. Effect of a GDL based on carbon paper or carbon cloth on PEM fuel cell performance[J]. Fuel, 2011, 90(1): 436-440. |
7 | Park S, Lee J W, Popov B N. Effect of carbon loading in microporous layer on PEM fuel cell performance[J]. Journal of Power Sources, 2006, 163(1): 357-363. |
8 | Park G G, Sohn Y J, Yang T H, et al. Effect of PTFE contents in the gas diffusion media on the performance of PEMFC[J]. Journal of Power Sources, 2004, 131(1/2): 182-187. |
9 | 陈旺, 蒋方明. PEMFC气体扩散层内PTFE含量及分布对气液两相流影响的LBM研究[J]. 工程热物理学报, 2016, 37(7): 1475-1483. |
Chen W, Jiang F M. Impact of PTFE content and distribution on liquid-gas flow in PEMFC gas distribution layer: 3D lattice boltzmann simulations[J]. Journal of Engineering Thermophysics, 2016, 37(7): 1475-1483. | |
10 | Pasaogullari U, Wang C Y. Liquid water transport in gas diffusion layer of polymer electrolyte fuel cells[J]. Journal of the Electrochemical Society, 2004, 151(3): A399. |
11 | Pasaogullari U, Wang C Y, Chen K S. Two-phase transport in polymer electrolyte fuel cells with bilayer cathode gas diffusion media[J]. Journal of the Electrochemical Society, 2005, 152(8): A1574 |
12 | 陈黎, 栾辉宝, 陶文铨. PEMFC气体通道表面润湿特性对气体扩散层中水分布的影响[J]. 化工学报, 2011, 62: 19-25. |
Chen L, Luan H B, Tao W Q. Effects of gas channel wall wettability on liquid water distribution and transport in gas diffusion layer of proton exchange membrane fuel cell[J]. CIESC Journal, 2011, 62: 19-25. | |
13 | Oszcipok M, Riemann D, Kronenwett U, et al. Statistic analysis of operational influences on the cold start behaviour of PEM fuel cells[J]. Journal of Power Sources, 2005, 145(2): 407-415. |
14 | 詹志刚, 吕志勇, 黄永, 等. 质子交换膜燃料电池冷启动及性能衰减研究[J]. 武汉理工大学学报, 2011, 33(1): 151-155. |
Zhan Z G, Lyu Z Y, Huang Y, et al. Research on PEMFC start-up at subzero temperature and performance decay[J]. Journal of Wuhan University of Technology, 2011, 33(1): 151-155. | |
15 | Cho E, Ko J J, Ha H Y, et al. Characteristics of the PEMFC repetitively brought to temperatures below 0℃[J]. Journal of the Electrochemical Society, 2003, 150(12): A1667-A1670. |
16 | Ishikawa Y, Morita T, Nakata K, et al. Behavior of water below the freezing point in PEFCs[J]. Journal of Power Sources, 2007, 163(2): 708-712. |
17 | Ishikawa Y, Hamada H, Uehara M, et al. Super-cooled water behavior inside polymer electrolyte fuel cell cross-section below freezing temperature[J]. Journal of Power Sources, 2008, 179(2): 547-552. |
18 | Tabe Y, Saito M, Fukui K R, et al. Cold start characteristics and freezing mechanism dependence on start-up temperature in a polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2012, 208: 366-373. |
19 | Tabe Y, Ichikawa R, Chikahisa T. Analysis of ice formation process in cathode catalyst layer of PEFC at cold start[J]. Energy Procedia, 2012, 28: 20-27. |
20 | Oberholzer P, Boillat P, Siegrist R, et al. Cold-start of a PEFC visualized with high resolution dynamic in-plane neutron imaging[J]. Journal of the Electrochemical Society, 2011, 159(2): B235-B245. |
21 | Oberholzer P, Boillat P, Siegrist R, et al. Neutron imaging of isothermal sub-zero degree Celsius cold-starts of a polymer electrolyte fuel cell (PEFC)[C]// ECS 220th ECS Meeting. Boston, 2011. |
22 | Mukundan R, Lujan R, Davey J R, et al. Ice formation in PEM fuel cells operated isothermally at sub-freezing temperatures[J]. ECS Transactions, 2019, 25(1): 345-355. |
23 | Dursch T J, Ciontea M A, Radke C J, et al. Isothermal ice crystallization kinetics in the gas-diffusion layer of a proton-exchange-membrane fuel cell[J]. Langmuir, 2012, 28(2): 1222-1234. |
24 | Dursch T J, Liu J F, Trigub G J, et al. Ice crystallization during cold-start of a proton-exchange-membrane fuel cell[J]. ECS Transactions, 2013, 58(1): 897-905. |
25 | 许澎, 许思传, 唐军英, 等. 基于孔隙尺度的燃料电池气体扩散层结冰研究[J]. 同济大学学报(自然科学版), 2019, 47(12): 1791-1800. |
Xu P, Xu S C, Tang J Y, et al. Pore-scale investigation of water freezing in gas diffusion layer for proton exchange membrane fuel cell[J]. Journal of Tongji University (Natural Science), 2019, 47(12): 1791-1800. | |
26 | Gwak G, Ko J, Ju H. Effects of porous properties on cold-start behavior of polymer electrolyte fuel cells from sub-zero to normal operating temperatures[J]. Scientific Reports, 2014, 4: 5770. |
27 | Gwak G, Ko J, Ju H. Numerical investigation of cold-start behavior of polymer-electrolyte fuel-cells from subzero to normal operating temperatures —effects of cell boundary and operating conditions[J]. International Journal of Hydrogen Energy, 2014, 39(36): 21927-21937. |
28 | 宋微, 俞红梅, 邵志刚,等. 气体扩散层中聚四氟乙烯的分布对质子交换膜燃料电池水淹的影响[J]. 催化学报, 2014, 35(4): 468-473. |
Song W, Yu H M, Shao Z G, et al. Effect of polytetrafluoroethylene distribution in the gas diffusion layer on water flooding in proton exchange membrane fuel cells[J]. Chinese Journal of Catalysis, 2014, 35(4): 468-473. | |
29 | 张华, 谢植. 复合温度传感器有效发射率影响因素分析[J]. 传感器技术, 2004, 23(3): 14-16, 20. |
Zhang H, Xie Z. Factors analysis influencing effective emissivity of compound temperature sensor[J]. Journal of Transducer Technology, 2004, 23(3): 14-16, 20. | |
30 | Akio S, Yoshio U, Seiji O, et al. Fundamental research on the supercooling phenomenon on heat transfer surfaces—investigation of an effect of characteristics of surface and cooling rate on a freezing temperature of supercooled water[J]. International Journal of Heat and Mass Transfer, 1990, 33(8): 1697-1709. |
[1] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[2] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
[3] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[4] | 贾晓宇, 杨剑, 王博, 林梅, 王秋旺. 金属丝网毛细特性的孔隙尺度数值分析[J]. 化工学报, 2023, 74(5): 1928-1938. |
[5] | 王皓, 唐思扬, 钟山, 梁斌. MEA吸收CO2富液解吸过程中固体颗粒表面的强化作用分析[J]. 化工学报, 2023, 74(4): 1539-1548. |
[6] | 胡香凝, 尹渊博, 袁辰, 是赟, 刘翠伟, 胡其会, 杨文, 李玉星. 成品油在土壤中运移可视化的实验研究[J]. 化工学报, 2023, 74(4): 1827-1835. |
[7] | 张银宁, 王进卿, 冯致, 詹明秀, 徐旭, 张光学, 池作和. 升温条件下多孔介质内气泡的生长和聚并行为[J]. 化工学报, 2023, 74(4): 1509-1518. |
[8] | 罗来明, 张劲, 郭志斌, 王海宁, 卢善富, 相艳. 1~5 kW高温聚合物电解质膜燃料电池堆的理论模拟与组装测试[J]. 化工学报, 2023, 74(4): 1724-1734. |
[9] | 杨辉著, 兰精灵, 杨月, 梁嘉林, 吕传文, 朱永刚. 高功率平板热管传热性能的实验研究[J]. 化工学报, 2023, 74(4): 1561-1569. |
[10] | 王晓萱, 胡晓红, 陆雨楠, 王士勇, 凡凤仙. 旋转膜过滤器内部流动特性数值模拟[J]. 化工学报, 2023, 74(4): 1489-1498. |
[11] | 钱志广, 樊越, 王世学, 岳利可, 王金山, 朱禹. 吹扫条件对PEMFC阻抗弛豫现象和低温启动的影响[J]. 化工学报, 2023, 74(3): 1286-1293. |
[12] | 郭祥, 乔金硕, 王振华, 孙旺, 孙克宁. 碳燃料固体氧化物燃料电池结构研究进展[J]. 化工学报, 2023, 74(1): 290-302. |
[13] | 雍加望, 赵倩倩, 冯能莲. 基于非线性动态模型的质子交换膜燃料电池故障诊断[J]. 化工学报, 2022, 73(9): 3983-3993. |
[14] | 张婉晨, 陈晓阳, 吕秋秋, 钟秦, 朱腾龙. Co掺杂SrTi0.3Fe0.7O3-δ 阳极SOFC在化工副产气燃料下的性能及稳定性[J]. 化工学报, 2022, 73(9): 4079-4086. |
[15] | 邵健, 冯军宗, 柳凤琦, 姜勇刚, 李良军, 冯坚. 酚醛树脂基炭微球结构调控与功能化制备研究进展[J]. 化工学报, 2022, 73(9): 3787-3801. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 154
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 542
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||