化工学报 ›› 2021, Vol. 72 ›› Issue (4): 2328-2336.DOI: 10.11949/0438-1157.20201144
• 过程安全 • 上一篇
收稿日期:
2020-08-10
修回日期:
2020-09-24
出版日期:
2021-04-05
发布日期:
2021-04-05
通讯作者:
王海清
作者简介:
屈持(1996—),男,硕士研究生,基金资助:
QU Chi1(),WANG Haiqing1(),JIANG Weiwei2,SUN Hao1,ZHANG Jingkang3
Received:
2020-08-10
Revised:
2020-09-24
Online:
2021-04-05
Published:
2021-04-05
Contact:
WANG Haiqing
摘要:
为实现不完全维修条件下的安全关键设备可靠性评估,针对传统可靠性评估模型未考虑多个故障样本间存在的数据差异问题,以及模型参数求解复杂的问题,提出了一种混合Kijima Ⅰ虚拟役龄模型。首先通过累积故障强度函数对时间图描述系统的故障趋势,根据AIC、BIC信息准则选取合适的可靠性评估模型,利用非线性约束规划法转换得到不完全维修下的分布参数估计值。随后针对不同故障原因造成的多类别样本故障数据,考虑故障数据间的差异性,建立了混合Kijima Ⅰ模型。将该模型应用到某LNG接收站卸船系统中,实例分析表明,该模型在实际可靠性评估中比常用的混合样本分布模型更加有效,有助于实现差异化维修和设备高可用性之间的平衡。
中图分类号:
屈持, 王海清, 姜巍巍, 孙浩, 张景康. 不完全维修策略下的安全关键设备可靠性评估[J]. 化工学报, 2021, 72(4): 2328-2336.
QU Chi, WANG Haiqing, JIANG Weiwei, SUN Hao, ZHANG Jingkang. Reliability evaluation of safety-critical equipment under imperfect maintenance strategy[J]. CIESC Journal, 2021, 72(4): 2328-2336.
序号 | 重要度关系 | Cx,y |
---|---|---|
1 | x,y两元素同等重要 | 1 |
2 | x元素比y元素稍微重要 | 3 |
3 | x元素比y元素明显重要 | 5 |
4 | x元素比y元素强烈重要 | 7 |
5 | x元素比y元素极度重要 | 9 |
6 | x元素比y元素稍不重要 | 1/3 |
7 | x元素比y元素明显不重要 | 1/5 |
8 | x元素比y元素强烈不重要 | 1/7 |
9 | x元素比y元素极度不重要 | 1/9 |
表1 1~9标度评分准则
Table 1 1—9 scale scoring criteria
序号 | 重要度关系 | Cx,y |
---|---|---|
1 | x,y两元素同等重要 | 1 |
2 | x元素比y元素稍微重要 | 3 |
3 | x元素比y元素明显重要 | 5 |
4 | x元素比y元素强烈重要 | 7 |
5 | x元素比y元素极度重要 | 9 |
6 | x元素比y元素稍不重要 | 1/3 |
7 | x元素比y元素明显不重要 | 1/5 |
8 | x元素比y元素强烈不重要 | 1/7 |
9 | x元素比y元素极度不重要 | 1/9 |
序号 | 故障间隔时间/h | |||
---|---|---|---|---|
1 | 14285 | 3 | 1/3 | 1/3 |
2 | 19282 | 3 | 1/3 | 2/3 |
3 | 23244 | 3 | 1/3 | 1 |
4 | 28204 | 3 | 1/3 | 4/3 |
5 | 35052 | 3 | 1/3 | 5/3 |
6 | 42876 | 3 | 1/3 | 2 |
7 | 52422 | 3 | 1/3 | 7/3 |
8 | 64010 | 3 | 1/3 | 8/3 |
9 | 77821 | 3 | 1/3 | 3 |
10 | 91611 | 3 | 1/3 | 10/3 |
11 | 106806 | 3 | 1/3 | 11/3 |
12 | 122879 | 3 | 1/3 | 4 |
13 | 138238 | 3 | 1/3 | 13/3 |
14 | 140000+ | 2 |
表2 模拟故障数据及预处理结果
Table 2 Simulated fault data and preprocessing
序号 | 故障间隔时间/h | |||
---|---|---|---|---|
1 | 14285 | 3 | 1/3 | 1/3 |
2 | 19282 | 3 | 1/3 | 2/3 |
3 | 23244 | 3 | 1/3 | 1 |
4 | 28204 | 3 | 1/3 | 4/3 |
5 | 35052 | 3 | 1/3 | 5/3 |
6 | 42876 | 3 | 1/3 | 2 |
7 | 52422 | 3 | 1/3 | 7/3 |
8 | 64010 | 3 | 1/3 | 8/3 |
9 | 77821 | 3 | 1/3 | 3 |
10 | 91611 | 3 | 1/3 | 10/3 |
11 | 106806 | 3 | 1/3 | 11/3 |
12 | 122879 | 3 | 1/3 | 4 |
13 | 138238 | 3 | 1/3 | 13/3 |
14 | 140000+ | 2 |
模型分类 | 参数估计值 | -lnL | AIC | BIC | |||
---|---|---|---|---|---|---|---|
修复如新 | (Weibull) | 形状参数=1.3198 | 尺度参数=64638 | 位置参数=8742 | -167.2168 | 340.4336 | 342.3507 |
修复如旧 | (NHPP) | 形状参数=0.5754 | 强度参数=0.0051 | — | -168.182 | 340.364 | 341.6421 |
不完全维修 | (Kijima Ⅰ) | 形状参数=0.7622 | 尺度参数=50527 | — | -158.3391 | 320.6782 | 321.9563 |
表3 模型对比结果
Table 3 Model comparison results
模型分类 | 参数估计值 | -lnL | AIC | BIC | |||
---|---|---|---|---|---|---|---|
修复如新 | (Weibull) | 形状参数=1.3198 | 尺度参数=64638 | 位置参数=8742 | -167.2168 | 340.4336 | 342.3507 |
修复如旧 | (NHPP) | 形状参数=0.5754 | 强度参数=0.0051 | — | -168.182 | 340.364 | 341.6421 |
不完全维修 | (Kijima Ⅰ) | 形状参数=0.7622 | 尺度参数=50527 | — | -158.3391 | 320.6782 | 321.9563 |
样本大小 | 评估指标 | ||
---|---|---|---|
相对误差 | |||
50 | 0.9919 | 0.00001 | 0.301 |
100 | 0.9411 | 0.00001 | 0.234 |
200 | 0.8393 | 0.00007 | 0.101 |
500 | 0.8126 | 0.00010 | 0.066 |
800 | 0.7906 | 0.00017 | 0.037 |
1000 | 0.7893 | 0.00016 | 0.035 |
2000 | 0.7639 | 0.00025 | 0.002 |
表4 不同样本的评估结果对比
Table 4 Comparison of evaluation results of different samples
样本大小 | 评估指标 | ||
---|---|---|---|
相对误差 | |||
50 | 0.9919 | 0.00001 | 0.301 |
100 | 0.9411 | 0.00001 | 0.234 |
200 | 0.8393 | 0.00007 | 0.101 |
500 | 0.8126 | 0.00010 | 0.066 |
800 | 0.7906 | 0.00017 | 0.037 |
1000 | 0.7893 | 0.00016 | 0.035 |
2000 | 0.7639 | 0.00025 | 0.002 |
故障原因分类 | 故障间隔时间/h |
---|---|
输出不稳定 | 10240、15480、20089、26918、33572、42103、53751、65895、73163、79789、87050 |
输出偏差大 | 19399、24042、37841、46281、57214、66390、75448、85317 |
恶意网络攻击 | 62231、87600+ |
表5 压力变送器样本数据
Table 5 Pressure transmitter sample data
故障原因分类 | 故障间隔时间/h |
---|---|
输出不稳定 | 10240、15480、20089、26918、33572、42103、53751、65895、73163、79789、87050 |
输出偏差大 | 19399、24042、37841、46281、57214、66390、75448、85317 |
恶意网络攻击 | 62231、87600+ |
样本 | wl | ||
---|---|---|---|
样本1 | 1.0068 | 0.00002 | 0.627 |
样本2 | 1.0583 | 0.00001 | 0.2923 |
样本3 | 1.1698 | 0.000001 | 0.0807 |
混合样本 | 0.8641 | 0.0001 | — |
表6 混合虚拟役龄模型分布参数
Table 6 Distribution parameters of mixed virtual service age model
样本 | wl | ||
---|---|---|---|
样本1 | 1.0068 | 0.00002 | 0.627 |
样本2 | 1.0583 | 0.00001 | 0.2923 |
样本3 | 1.1698 | 0.000001 | 0.0807 |
混合样本 | 0.8641 | 0.0001 | — |
2 | Wang Z M, Yang J G. Bayesian reliability analysis for NC machine tools with minimal repair[J]. Computer Integrated Manufacturing Systems, 2014, 20(9): 2215-2220. |
3 | 王慧, 赵国超, 宋宇宁, 等. 基于改进的威布尔分布的液压支架可靠性评估方法[J]. 中国安全科学学报, 2018, 28(5): 99-104. |
Wang H, Zhao G C, Song Y N, et al. Reliability evaluation method of hydraulic support based on improved Weibull distribution[J]. China Safety Science Journal, 2018, 28(5): 99-104. | |
4 | 彭新凯, 王海清, 刘建利, 等. 石化安全设备寿命参数极大似然估计[J]. 中国安全科学学报, 2019, 29(2): 94-99. |
Peng X K, Wang H Q, Liu J L, et al. Maximum likelihood estimation of petrochemical safety equipment lifetime parameters[J]. China Safety Science Journal, 2019, 29(2): 94-99. | |
5 | 汪航, 王海清, 刘芳. 基于贝叶斯方法的石化设备失效数据推断技术研究[J]. 安全与环境学报, 2014, 14(6): 5-7. |
Wang H, Wang H Q, Liu F. Research on inference and forecasting technology for petrochemical equipment failure based on Bayesian method[J]. Journal of Safety and Environment, 2014, 14(6): 5-7. | |
6 | 王智明, 杨建国. 数控机床可靠性评估中的边界强度过程[J]. 上海交通大学学报, 2012, 46(10): 1622-1626, 1631. |
Wang Z M, Yang J G. Bounded intensity process and its applications in reliability assessment of NC machine tools[J]. Journal of Shanghai Jiao Tong University, 2012, 46(10): 1622-1626, 1631. | |
7 | Tanwar M, Rai R N, Bolia N. Imperfect repair modeling using Kijima type generalized renewal process[J]. Reliability Engineering & System Safety, 2014, 124: 24-31. |
8 | 任丽娜, 芮执元, 王智明. 可修系统不完全维修连续比例强度模型及应用[J]. 中南大学学报(自然科学版), 2015, 46(7): 2467-2473. |
Ren L N, Rui Z Y, Wang Z M. Imperfect repair continuous proportional intensity model for repairable systems and its application[J]. Journal of Central South University (Science and Technology), 2015, 46(7): 2467-2473. | |
9 | Wang L, Hu H J, Wang Y Q, et al. The availability model and parameters estimation method for the delay time model with imperfect maintenance at inspection[J]. Applied Mathematical Modelling, 2011, 35(6): 2855-2863. |
10 | Geng J, Zhou D, Lv C, et al. A modeling approach for maintenance safety evaluation in a virtual maintenance environment[J]. Computer-Aided Design, 2013, 45(5): 937-949. |
11 | Kim J, Jeong H Y. Evaluation of the adequacy of maintenance tasks using the failure consequences of railroad vehicles[J]. Reliability Engineering & System Safety, 2013, 117: 30-39. |
12 | Nguyen D T, Dijoux Y, Fouladirad M. Analytical properties of an imperfect repair model and application in preventive maintenance scheduling[J]. European Journal of Operational Research, 2017, 256(2): 439-453. |
13 | Kijima M, Sumita U. A useful generalization of renewal theory: counting processes governed by non-negative Markovian increments[J]. Journal of Applied Probability, 1986, 23(1): 71-88. |
1 | 任丽娜, 芮执元, 刘军, 等. 数控机床最小维修的全寿命周期可靠性评估[J]. 上海交通大学学报, 2015, 49(1): 19-23. |
Ren L N, Rui Z Y, Liu J, et al. Whole lifecycle reliability assessment of multiple NC machine tools with minimal repair[J]. Journal of Shanghai Jiao Tong University, 2015, 49(1): 19-23. | |
14 | Cox D R. The Statistical Analysis of Dependencies in Point Process, Stochastic Point Processes[M]. Lewis P A W. New York: John Wiley, 1972: 55-66. |
15 | Syamsundar A, Naikan V N A. Imperfect repair proportional intensity models for maintained systems[J]. IEEE Transactions on Reliability, 2011, 60(4): 782-787. |
16 | 张根保, 刘杰, 高琦樑, 等. 多台数控机床不完全维修的可靠性评估[J]. 重庆大学学报, 2014, 37(2): 1-6. |
Zhang G B, Liu J, Gao Q L, et al. Reliability assessment of multiple NC machine tools with imperfect repair[J]. Journal of Chongqing University, 2014, 37(2): 1-6. | |
17 | Wang Z M, Yu X. Log-linear process modeling for repairable systems with time trends and its applications in reliability assessment of numerically controlled machine tools[J]. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2013, 227(1): 55-65. |
18 | Gasmi S. Estimating parameters of a log-linear intensity for a repairable system[J]. Applied Mathematical Modelling, 2013, 37(6): 4325-4336. |
19 | Lim J H, Qu J, Zuo M J. Age replacement policy based on imperfect repair with random probability[J]. Reliability Engineering & System Safety, 2016, 149: 24-33. |
20 | Almalki S J, Nadarajah S. Modifications of the Weibull distribution: a review[J]. Reliability Engineering & System Safety, 2014, 124: 32-55. |
21 | Wang Z M, Yang J G. Numerical method for Weibull generalized renewal process and its applications in reliability analysis of NC machine tools[J]. Computers & Industrial Engineering, 2012, 63(4): 1128-1134. |
22 | Caroni C. “Failure limited” data and TTT-based trend tests in multiple repairable systems[J]. Reliability Engineering & System Safety, 2010, 95(6): 704-706. |
23 | Kvaløy J T, Lindqvist B H. TTT-based tests for trend in repairable systems data[J]. Reliability Engineering & System Safety, 1998, 60(1): 13-28. |
24 | Chen X M. Using akaike information criterion for selecting the field distribution in a reverberation chamber[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(4): 664-670. |
25 | 张根保, 李冬英, 刘杰, 等. 面向不完全维修的数控机床可靠性评估[J]. 机械工程学报, 2013, 49(23): 136-141. |
Zhang G B, Li D Y, Liu J, et al. Reliability assessment for multiple NC machine tools oriented to general repair[J]. Journal of Mechanical Engineering, 2013, 49(23): 136-141. | |
26 | 王智明, 杨建国, 王国强, 等. 多台数控机床的时间截尾可靠性评估[J]. 哈尔滨工业大学学报, 2011, 43(3): 85-89. |
Wang Z M, Yang J G, Wang G Q, et al. Reliability evaluation of multiple NC machine tools with time truncation[J]. Journal of Harbin Institute of Technology, 2011, 43(3): 85-89. | |
27 | Ghosh A, Majumdar S K. Modeling failure types and failure times of turning and boring machine systems[J]. International Journal of Quality & Reliability Management, 2010, 27(7): 815-831. |
28 | 王海清, 陈韬婕, 刘祥妹. 数字化液化天然气接收站综合实验平台开发[J]. 实验室研究与探索, 2017, 36(6): 249-254. |
Wang H Q, Chen T J, Liu X M. Development of comprehensive experimental platform for LNG receiving terminal demanded by safety engineering international education[J]. Research and Exploration in Laboratory, 2017, 36(6): 249-254. | |
29 | 王海清, 徐慧敏, 田英帅, 等. 基于ALOHA软件探索LNG接收站仿真实验室的优化设计[J]. 实验技术与管理, 2020, 37(3): 230-234. |
Wang H Q, Xu H M, Tian Y S, et al. Exploration on optimization design of simulation laboratory for LNG receiving station based on ALOHA software[J]. Experimental Technology and Management, 2020, 37(3): 230-234. | |
30 | 朱建鲁, 李玉星, 王武昌, 等. LNG接收终端工艺流程动态仿真[J]. 化工学报, 2013, 64(3): 1000-1007. |
Zhu J L, Li Y X, Wang W C, et al. Dynamic simulation of LNG import terminal process[J]. CIESC Journal, 2013, 64(3): 1000-1007. | |
31 | 鲁毅, Yap E, 刘昳蓉, 等. 可靠性、可用性与可维修性分析在LNG接收站产能预测中的应用 [J]. 化工学报, 2015, 66: 430-438. |
Lu Y, Yap E, Liu Y R, et al. Reliability, availability and maintainability(RAM)modeling to predict production performance of LNG storage terminal[J]. CIESC Journal, 2015, 66: 430-438. | |
32 | . Petroleum, petrochemical and natural gas industries — collection and exchange of reliability and maintenance data for equipment[S]. Switzerland: ISO, 2016. |
33 | SINTEF, NTNU. Offshore Reliability Data Handbook[M]. 6th ed. Norway: Det Norske Veritas (DNV), 2015. |
34 | 屈持, 王海清, 刘建利, 等. 基于最小维修的石化安全设备区间截尾寿命数据分析[J]. 化工进展, 2020, 39(11): 4384-4390. |
Qu C, Wang H Q, Liu J L, et al. Interval censored life data of petrochemical safety equipment based on minimal maintenance[J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4384-4390. | |
35 | 徐子军, 王海清, 陈韬婕, 等. 基于蒙特卡罗的石化设备寿命均值估计优化与应用[J]. 中国安全科学学报, 2016, 26(5): 70-75. |
Xu Z J, Wang H Q, Chen T J, et al. Optimization of petrochemical equipment MTTF estimation based on Monte Carlo and its application[J]. China Safety Science Journal, 2016, 26(5): 70-75. | |
36 | Preacher K J, Selig J P. Advantages of Monte Carlo confidence intervals for indirect effects[J]. Communication Methods and Measures, 2012, 6(2): 77-98. |
2 | 王智明, 杨建国. 数控机床最小维修的贝叶斯可靠性分析[J]. 计算机集成制造系统, 2014, 20(9): 2215-2220. |
[1] | 李珍宝, 李超, 王虎, 王绍瑞, 黎泉. MPP抑制铝镁合金粉尘爆炸微观机理研究[J]. 化工学报, 2023, 74(8): 3608-3614. |
[2] | 刘晓洋, 喻健良, 侯玉洁, 闫兴清, 张振华, 吕先舒. 螺旋微通道对掺氢甲烷爆轰传播的影响[J]. 化工学报, 2023, 74(7): 3139-3148. |
[3] | 肖忠良, 尹碧露, 宋刘斌, 匡尹杰, 赵亭亭, 刘成, 袁荣耀. 废旧锂离子电池回收工艺研究进展及其安全风险分析[J]. 化工学报, 2023, 74(4): 1446-1456. |
[4] | 贠程, 王倩琳, 陈锋, 张鑫, 窦站, 颜廷俊. 基于社团结构的化工过程风险演化路径深度挖掘[J]. 化工学报, 2023, 74(4): 1639-1650. |
[5] | 武子超, 汪志雷, 李荣业, 李可昕, 华敏, 潘旭海, 王三明, 蒋军成. 点火方式对欠膨胀氢气射流爆炸超压影响规律研究[J]. 化工学报, 2023, 74(3): 1409-1418. |
[6] | 杜江龙, 杨雯棋, 黄凯, 练成, 刘洪来. 复合相变材料/空冷复合式锂离子电池模块散热性能[J]. 化工学报, 2023, 74(2): 674-689. |
[7] | 杨克, 王辰升, 纪虹, 郑凯, 邢志祥, 毕海普, 蒋军成. 聚多巴胺包覆混合粉体抑制甲烷爆炸的实验研究[J]. 化工学报, 2022, 73(9): 4245-4254. |
[8] | 廖珊珊, 张少刚, 陶骏骏, 刘家豪, 汪金辉. 竖直射流火撞击障碍管道数值模拟分析[J]. 化工学报, 2022, 73(9): 4226-4234. |
[9] | 王燕, 何佳, 杨晶晶, 林晨迪, 纪文涛. 草酸盐和碳酸氢盐抑制聚乙烯粉尘爆炸特性[J]. 化工学报, 2022, 73(9): 4207-4216. |
[10] | 杨静, 林振康, 汤君, 樊铖, 孙克宁. 电池系统的故障特征以及多故障的诊断与识别[J]. 化工学报, 2022, 73(8): 3394-3405. |
[11] | 张经纬, 周弋惟, 陈卓, 徐建鸿. 微反应器内的有机合成前沿进展[J]. 化工学报, 2022, 73(8): 3472-3482. |
[12] | 周梦雅, 周魁斌, 王朝, 黄梦源, 王一凡, 蒋军成. 坑道限制条件下水平丙烷喷射火火焰行为研究[J]. 化工学报, 2022, 73(2): 960-971. |
[13] | 张凤丽, 潘辉, 王金江. 基于多元状态估计的热交换器多参数关联预警方法[J]. 化工学报, 2022, 73(2): 814-826. |
[14] | 刘伯峥, 王静波, 曾涛, 殷雅侠, 郭玉国. 磷酸铁锂电池寿命初期与末期安全性差异[J]. 化工学报, 2022, 73(12): 5555-5563. |
[15] | 雷明川, 喻健良, 闫兴清, 吕先舒, 侯玉洁, 詹潇兵. 惰性气体对氢气/空气爆轰传播的抑制作用[J]. 化工学报, 2022, 73(10): 4754-4761. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||